RUI: Inverse Spectral Problems in One and Two Dimensions
RUI:一维和二维逆谱问题
基本信息
- 批准号:0209562
- 负责人:
- 金额:$ 9.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-15 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work investigates the numerical and analytic solution of inversespectral problems in one and two dimensions. In one dimension, theappearance of an eigenparameter in the boundary condition of aSturm-Liouville problem causes a loss of self-adjointness. Althoughuniqueness of the inverse problem has been established, there are noconstructive schemes available that lend themselves to numericalcomputation. This work (with William Rundell) develops and analyzes twoconstructive schemes involving to recover the potential in this type ofproblem. In two dimensions, the eigenvalues of particular membranes are usedto find an approximation to a function representing the nonhomogeneity inthe boundary value problem governing the elastic membrane. Projection of theboundary value problem and its coefficients onto appropriate vector spacesleads to a matrix inverse problem, which is solved using optimizationtechniques. This work will consider various domains and investigate therecovery of multiple coefficients. Theoretical questions regarding circulardomains will also be investigated. In particular, the recovery of a radialdensity using techniques from differential geometry and the properties ofthe radial spectrum of a vibrating circular membrane will be investigated.There are many situations in which it is not practical to measure an object's properties directly. Doctors do not perform surgery to determine the sizeof a brain tumor prior to a patient's treatment. An engineer does notdismantle an airplane to determine the level of corrosion in its wing.Instead external measurements of an object are made and used to determinethe internal properties of the object. This research focuses on the use ofvibrational information to determine physical parameters of an object. Ifthese parameters are known, the vibration is modeled mathematically by aboundary value problem. If the parameters are not known, but the vibrationis known, then the problem to be solved is an inverse boundary valueproblem - also known as an inverse spectral problem. This project developsseveral constructive algorithms for the solution of this type of problem. Itis important to realize that while mathematical inverse problems often havemultiple solutions, their physical counterpart may not. Choosing the"correct" solution is also addressed in this work.
本文研究了一维和二维逆谱问题的数值解和解析解。在一维Sturm-Liouville问题的边界条件中,本征参数的出现会导致自伴性的丧失。尽管反问题的唯一性已经确定,但还没有适合于数值计算的构造性方案。这项工作(与威廉·伦德尔)开发和分析了两个涉及恢复这类问题的潜力的建设性方案。在二维情况下,利用特定薄膜的特征值来近似表示弹性薄膜边值问题中的非均匀函数。将边值问题及其系数投影到适当的向量空间,得到一个矩阵逆问题,该问题可用最优化技术求解。这项工作将考虑不同的领域,并研究多个系数的恢复。此外,还将探讨有关圆形区域的理论问题。特别是,将研究利用微分几何技术恢复辐射密度以及振动圆膜的径向光谱特性。在许多情况下,直接测量物体的特性是不现实的。在病人接受治疗之前,医生不会通过手术来确定脑瘤的大小。工程师不是为了确定飞机机翼的腐蚀程度而拆解飞机,而是对物体进行外部测量,并用来确定物体的内部特性。本研究的重点是利用振动信息来确定物体的物理参数。在这些参数已知的情况下,用充分值问题对振动进行数学建模。如果参数未知,但振动已知,则要解决的问题是逆边值问题,也称为逆谱问题。这个项目开发了几个用于解决这类问题的构造性算法。重要的是要认识到,虽然数学反问题通常有多个解,但它们的物理对应问题可能不会。选择“正确”的解决方案也在这项工作中讨论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maeve McCarthy其他文献
Maeve McCarthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maeve McCarthy', 18)}}的其他基金
ADVANCE Adaptation: Leveling the Playing Field, Strategic Equity Initiatives at Murray State University
推进适应:默里州立大学的公平竞争环境、战略公平举措
- 批准号:
1935939 - 财政年份:2019
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
IT-C: Differences and Deficits Affecting Women STEM Faculty: Creating a Framework for Change at a Rural Public University
IT-C:影响女性 STEM 教师的差异和缺陷:在农村公立大学创建变革框架
- 批准号:
1608576 - 财政年份:2016
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
SEARCDE - 27, Twenty Seventh Southeastern-Atlantic Regional Conference on Differential Equations
SEARCDE - 27,第二十七届东南大西洋微分方程区域会议
- 批准号:
0724248 - 财政年份:2007
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Sampling Algorithms and Inverse Spectral Methods in Scattering
散射中的新采样算法和逆谱方法
- 批准号:
2107891 - 财政年份:2021
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
$ 9.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Steklov eigenvalues of polygons and inverse spectral problems
多边形的 Steklov 特征值和逆谱问题
- 批准号:
526846-2018 - 财政年份:2018
- 资助金额:
$ 9.63万 - 项目类别:
University Undergraduate Student Research Awards
New models of inverse spectral and scattering theory - form discrete to condinuoud
逆光谱和散射理论的新模型——从离散到连续
- 批准号:
16H03944 - 财政年份:2016
- 资助金额:
$ 9.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inverse Spectral Geometry for Quantum Gravity
量子引力的逆谱几何
- 批准号:
441839-2013 - 财政年份:2015
- 资助金额:
$ 9.63万 - 项目类别:
Postgraduate Scholarships - Doctoral
Inverse Problems and Spectral Theory for Elliptic Operators
椭圆算子的反问题和谱理论
- 批准号:
1500703 - 财政年份:2015
- 资助金额:
$ 9.63万 - 项目类别:
Continuing Grant
New development of Lipschitz structure/collapsing theory of Alexandrov spaces and inverse spectral problem
Lipschitz结构/Alexandrov空间塌陷理论与逆谱问题的新进展
- 批准号:
26287010 - 财政年份:2014
- 资助金额:
$ 9.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference on Inverse Problems and Spectral Theory, October 17-19, 2014
反问题和谱理论会议,2014 年 10 月 17-19 日
- 批准号:
1412493 - 财政年份:2014
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Inverse Spectral Geometry for Quantum Gravity
量子引力的逆谱几何
- 批准号:
441839-2013 - 财政年份:2014
- 资助金额:
$ 9.63万 - 项目类别:
Postgraduate Scholarships - Doctoral
Inverse Spectral Geometry for Quantum Gravity
量子引力的逆谱几何
- 批准号:
441839-2013 - 财政年份:2013
- 资助金额:
$ 9.63万 - 项目类别:
Postgraduate Scholarships - Doctoral