Steklov eigenvalues of polygons and inverse spectral problems
多边形的 Steklov 特征值和逆谱问题
基本信息
- 批准号:526846-2018
- 负责人:
- 金额:$ 0.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:University Undergraduate Student Research Awards
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geadah, Victor其他文献
Geadah, Victor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geadah, Victor', 18)}}的其他基金
Timescales of activation adaptation in recurrent neural networks
循环神经网络中激活适应的时间尺度
- 批准号:
557875-2021 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似海外基金
LEAPS-MPS: Investigation on Spectral Geometry of Steklov Eigenvalues
LEAPS-MPS:Steklov 特征值的谱几何研究
- 批准号:
2316620 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
RGPIN-2021-03032 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual
Analysis on spectral and embedded eigenvalues for non-local Schrodinger operators
非局部薛定谔算子的谱和嵌入特征值分析
- 批准号:
21KK0245 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Fluctuations of random matrix eigenvalues and disordered systems
随机矩阵特征值的涨落和无序系统
- 批准号:
RGPIN-2022-03118 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual
Fluctuations of random matrix eigenvalues and disordered systems
随机矩阵特征值的涨落和无序系统
- 批准号:
DGECR-2022-00435 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Launch Supplement
Far apart: outliers, extremal eigenvalues, and spectral gaps in random graphs and random matrices
相距较远:随机图和随机矩阵中的异常值、极值特征值和谱间隙
- 批准号:
2154099 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Gaps between Robin and Neumann eigenvalues
Robin 和 Neumann 特征值之间的差距
- 批准号:
562327-2021 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
University Undergraduate Student Research Awards
Eigenvalues of Stochastic Matrices with Prescribed Stationary Distribution
具有规定平稳分布的随机矩阵的特征值
- 批准号:
564391-2021 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
University Undergraduate Student Research Awards
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
DGECR-2021-00121 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Launch Supplement
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
RGPIN-2021-03032 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual