NIRT: Computational Design and Optimization of Nanoscale Spintronic and Thermoelectric Devices
NIRT:纳米级自旋电子和热电器件的计算设计和优化
基本信息
- 批准号:0210717
- 负责人:
- 金额:$ 104.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal was received in response to the Nanoscale Science and Engineering Initiative, NSF 01-157, category Nanoscale Interdisciplinary Research Team (NIRT). The award is funded jointly by the Division of Materials Research and the International Division, and involves researchers at Georgetown University and IBM-Almaden.The objective of this research project is to develop and apply computational methods to help optimize spintronic devices and to investigate novel proposals for thermoelectric coolers. Both types of devices to be considered consist of ultrathin layers of different materials stacked together, forming a heterogeneous system in which bulk properties are strongly modified on the nanoscale by the presence of interfaces. Density-functional methods and many-body techniques will be combined to study both equilibrium and nonequilibrium properties of such systems. The spintronics project is aimed at developing a better understanding of how to efficiently inject spins from metals into semiconductors. This issue is key for the design of improved spin transistors and spin filters. Computer algorithms will be developed to self-consistently calculate the nonequilibrium steady-state transport in nanoscale multilayer devices composed of ferromagnets, semiconductors, insulators, and materials close to the metal-insulator transition. The rearrangement of charge and spin near each interface will be treated self-consistently. Density-functional methods will be employed to evaluate materials-specific interface properties such as fermi-level mismatch and charge and spin scattering lengths, which will then be used as input parameters for the Keldysh nonequilibrium transport codes.In the thermoelectric project, nanoscale heterostructures composed of metals, semiconductors, and heavy-fermion, and other strongly-correlated, materials will be investigated as potential thermoelectric devices. This is an extension of ongoing work on thermoelectricity in bulk materials and on modeling many-body effects in Josephson junctions. The numerical renormalization group will be used to examine equilibrium properties of systems described by the periodic Anderson model and its combination with the Falicov-Kimball model. Transport properties will be calculated using a linear response formalism. Density-functional calculations will be used to determine properties of relevant interfaces and to estimate parameter regimes for the lattice models. To date, experimental difficulties have thwarted a sytematic study of nanoscale devices constructed from heavy-fermion materials. The proposed computational modeling will help guide the search for novel heavy-fermion-based-low-tempreature thermoelectric devices.This university-industry collaboration will provide valuable educational opportunities for postdoctoral researchers and graduate students. The Georgetown graduate student will spend one year at the IBM site as part of his/her training in Georgetown's Industrial Leadership in Physics program. Postdoctoral researchers will also gain experience in both the academic and industrial research environments. In addition, the project involves international collaborations, particularly with Croatia, in which both senior and junior personnel will participate.%%%This proposal was received in response to the Nanoscale Science and Engineering Initiative, NSF 01-157, category Nanoscale Interdisciplinary Research Team (NIRT). The award is funded jointly by the Division of Materials Research and the International Division, and involves researchers at Georgetown University and IBM-Almaden.The objective of this research project is to develop and apply computational methods to help optimize spintronic devices and to investigate novel proposals for thermoelectric coolers. Both types of devices to be considered consist of ultrathin layers of different materials stacked together, forming a heterogeneous system in which bulk properties are strongly modified on the nanoscale by the presence of interfaces.This university-industry collaboration will provide valuable educational opportunities for postdoctoral researchers and graduate students. The Georgetown graduate student will spend one year at the IBM site as part of his/her training in Georgetown's Industrial Leadership in Physics program. Postdoctoral researchers will also gain experience in both the academic and industrial research environments. In addition, the project involves international collaborations, particularly with Croatia, in which both senior and junior personnel will participate.***
该提案是响应纳米科学与工程倡议,NSF 01-157,类别纳米跨学科研究小组(NIRT)。 该奖项由材料研究部和国际部共同资助,涉及乔治敦大学和IBM Almaden的研究人员。该研究项目的目标是开发和应用计算方法,以帮助优化自旋电子器件,并研究热电冷却器的新方案。 这两种类型的器件都是由不同材料的多层堆叠在一起组成的,形成了一个异质系统,在这个系统中,由于界面的存在,本体特性在纳米尺度上发生了强烈的变化。 密度泛函方法和多体技术将被结合起来研究这类系统的平衡和非平衡性质。自旋电子学项目旨在更好地了解如何有效地将金属自旋注入半导体。 这个问题是设计改进的自旋晶体管和自旋滤波器的关键。 将开发计算机算法,以自洽地计算由铁磁体、半导体、绝缘体和接近金属-绝缘体转变的材料组成的纳米级多层器件中的非平衡稳态输运。 每个界面附近的电荷和自旋的重新排列将自洽地处理。 密度泛函方法将被用来评估材料特定的界面特性,如费米能级失配和电荷和自旋散射长度,然后将被用作输入参数的Keldysh非平衡输运codes.In热电项目,纳米异质结构组成的金属,半导体和重费米子,和其他强相关的材料,将被调查作为潜在的热电器件。 这是一个正在进行的工作,在散装材料热电和约瑟夫森结的多体效应建模的延伸。 数值重整化群将被用来检查由周期性安德森模型及其与Falicov-Kimball模型的组合描述的系统的平衡性质。 输运性质将使用线性响应形式主义计算。 密度泛函计算将用于确定相关接口的属性,并估计参数制度的晶格模型。 到目前为止,实验上的困难阻碍了对由重费米子材料构成的纳米器件的系统研究。 所提出的计算模型将有助于指导新的重费米子基低温热电器件的研究。这种大学与工业的合作将为博士后研究人员和研究生提供宝贵的教育机会。 乔治城大学的研究生将在IBM工厂工作一年,作为他/她在乔治城大学物理学项目中的工业领导力培训的一部分。 博士后研究人员还将获得学术和工业研究环境的经验。 此外,该项目还涉及国际合作,特别是与克罗地亚的合作,高级和初级人员都将参与其中。该提案是响应纳米科学与工程倡议,NSF 01-157,类别纳米跨学科研究小组(NIRT)。 该奖项由材料研究部和国际部共同资助,涉及乔治敦大学和IBM Almaden的研究人员。该研究项目的目标是开发和应用计算方法,以帮助优化自旋电子器件,并研究热电冷却器的新方案。 这两种类型的器件都是由不同材料的多层堆叠在一起,形成一个异质系统,在这个系统中,界面的存在会在纳米尺度上强烈地改变本体特性。这种大学与工业的合作将为博士后研究人员和研究生提供宝贵的教育机会。 乔治城大学的研究生将在IBM工厂工作一年,作为他/她在乔治城大学物理学项目中的工业领导力培训的一部分。 博士后研究人员还将获得学术和工业研究环境的经验。 此外,该项目还涉及国际合作,特别是与克罗地亚的合作,高级和初级人员都将参加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Freericks其他文献
Time-resolved photoemission of correlated electrons driven out of equilibrium
失去平衡的相关电子的时间分辨光发射
- DOI:
10.1103/physrevb.81.165112 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
Brian Moritz;Brian Moritz;T. Devereaux;T. Devereaux;James Freericks - 通讯作者:
James Freericks
Dynamical mean-field theory for strongly correlated inhomogeneous multilayered nanostructures
强相关非均匀多层纳米结构的动态平均场理论
- DOI:
10.1103/physrevb.70.195342 - 发表时间:
2004 - 期刊:
- 影响因子:3.7
- 作者:
James Freericks - 通讯作者:
James Freericks
Exact solution for Bloch oscillations of a simple charge-density-wave insulator
简单电荷密度波绝缘体布洛赫振荡的精确解
- DOI:
10.1103/physrevb.89.235129 - 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Wen Shen;T. Devereaux;James Freericks - 通讯作者:
James Freericks
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
- DOI:
10.1109/hpcmp-ugc.2010.17 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
James Freericks;H. R. Krishnamurthy;Pierre Carrier;Yousef Saad - 通讯作者:
Yousef Saad
Segregation and charge-density-wave order in the spinless Falicov-Kimball model
无旋转 Falicov-Kimball 模型中的偏析和电荷密度波序
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
James Freericks;R. Lemański - 通讯作者:
R. Lemański
James Freericks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Freericks', 18)}}的其他基金
Collaborative Research: Practical strategies for implementing quantum chemistry on near-term quantum computers
合作研究:在近期量子计算机上实施量子化学的实用策略
- 批准号:
2154671 - 财政年份:2022
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
Engineering Reservoirs and Optimizing Response Function Measurements in Quantum Simulators and Computers
工程储层和优化量子模拟器和计算机中的响应函数测量
- 批准号:
1915130 - 财政年份:2019
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
QLC: EAGER: Collaborative Research: New Design for Quantum Chemistry Calculations on Emerging Quantum Computers
QLC:EAGER:协作研究:新兴量子计算机上量子化学计算的新设计
- 批准号:
1836497 - 财政年份:2018
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
Ion-Trap-Based Quantum Computers: From Benchmarking to Outperforming Classical Digital Computers
基于离子阱的量子计算机:从基准测试到超越经典数字计算机
- 批准号:
1620555 - 财政年份:2016
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
PIF: Beyond Adiabatic State Preparation with Ultracold Trapped Ion Quantum Simulators
PIF:使用超冷俘获离子量子模拟器进行超越绝热态的制备
- 批准号:
1314295 - 财政年份:2013
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
Transport and Nonequilibrium Effects in Strongly Correlated Multilayer Nanostructure
强相关多层纳米结构中的输运和非平衡效应
- 批准号:
1006605 - 财政年份:2010
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH:DEVELOPMENT OF EFFICIENT PETASCALE ALGORITHMS FOR INHOMOGENEOUSQUANTUM-MECHANICAL SYSTEMS
合作研究:针对非均匀量子力学系统开发高效的千万亿级算法
- 批准号:
0904597 - 财政年份:2009
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
Modeling Strongly Correlated Multilayered Nanostructures for use as Thermoelectric Refrigerators
模拟用作热电冰箱的强相关多层纳米结构
- 批准号:
0705266 - 财政年份:2007
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
Spintronics 2001; Washington, DC; August 9-11, 2001
自旋电子学2001;
- 批准号:
0108908 - 财政年份:2001
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
Combining ab initio Methods and many-Body Theory to Describe the Electron-Phonon Interaction in Real Materials
结合从头计算方法和多体理论来描述实际材料中的电子-声子相互作用
- 批准号:
9973225 - 财政年份:1999
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
EU-Funded
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
Computational design of frontier materials for sustainable technologies
可持续技术前沿材料的计算设计
- 批准号:
FL230100176 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Australian Laureate Fellowships
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
- 批准号:
10110861 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
EU-Funded
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Standard Grant
CAREER: Computational Design of High-Performing V2O5 Cathodes for Zn-ion batteries
职业:锌离子电池高性能 V2O5 阴极的计算设计
- 批准号:
2339751 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Continuing Grant
Richter - Advancing Construction Design Efficiency through computational analysis: Revolutionising Working Platforms within construction industry
Richter - 通过计算分析提高建筑设计效率:彻底改变建筑行业的工作平台
- 批准号:
10089025 - 财政年份:2024
- 资助金额:
$ 104.52万 - 项目类别:
Collaborative R&D