Collaborative Research: Practical strategies for implementing quantum chemistry on near-term quantum computers
合作研究:在近期量子计算机上实施量子化学的实用策略
基本信息
- 批准号:2154671
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry, James Freericks of Georgetown University and Dominika Zgid of the University of Michigan are collaborating to develop practical implementations for quantum chemistry problems on current or near future generation of quantum computers. Quantum chemistry is viewed as one of the most promising applications of quantum computing. But, currently available quantum hardware platforms are regarded as noisy intermediate scale quantum (NISQ) era devices, implying only short programs can be run on them. Freericks and Zgid will employ hybrid quantum-classical methodologies to mitigate the presence of the quantum noise and run only the most important part of the calculation on a NISQ machine, while the remainder will be executed on a classical computer. In this way, the quantum computer is viewed as an accelerator or enabler for the full calculation. Freericks and Zgid will investigate two questions: (i) How efficiently can one trade off the length of the program by increasing the number of noisy measurements? and (ii) How accurately can a real quantum chemistry Hamiltonian be approximated via a fictitious sparse Hamiltonian that is suitable to be run on a NISQ device, while still yielding excellent molecular energies and dynamics. In the educational component of this project, Dr. Freericks will design chemistry-specific materials for a book entitled Quantum Mechanics without Calculus; a book devoted to developing quantum mechanics curriculum with a much lower mathematics prerequisite. Dominika Zgid will prepare a series of workshops for the F.E.M.M.E.S. (women excelling more in math, engineering and sciences) organization.Many algorithms and strategies exist, in principle, for solving the electronic structure problem in chemistry on a quantum computer, but there remains a huge chasm between the theoretical possibilities and the computational realities of near-term devices. Freericks and Zgid intend to cross that chasm by providing practical implementations for electronic structure problems to be solved on quantum computers. Freericks and his group will employ a factorized form of the unitary coupled cluster ansatz (UCC) with a small number of exact terms treated in the wavefunction ansatz, and hence a small number of parameters that will need to be optimized in the prepared wavefunction. It is then supplemented by an expansion of the energy expectation value to second order in the amplitudes for the UCC ansatz for a large number of additional "virtual" amplitudes. Optimization is then accomplished by solving a row-reduction problem on the classical computer. This trades off circuit depth for measurements. To further minimize circuit depths, Zgid and her group will employ an effective approach to produce ultra-sparse Hamiltonians suitable for NISQ devices. This approach is based on molecular self-energy and assumes that the dynamical part of the self-energy will be translatable from the exact molecular system to a system described by the sparse Hamiltonian via the dynamical self-energy mapping methodology (DSEM). For the broader impacts, the work by Freericks uses the so-called factorization method, employing operator methods (different from both wavefunction and matrix methods), and more suitable for training students in future research work, since research usually involves working with operators. The broader impact work of Zgid consists largely in an outreach program that is designed to excite middle-school-age girls for future careers in science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学理论、模型和计算方法(CTMC)项目的支持下,乔治敦大学的James Freericks和密歇根大学的Dominika Zgid正在合作开发量子化学问题在当前或不久的将来一代量子计算机上的实际实现。量子化学被认为是量子计算最有前途的应用之一。但是,目前可用的量子硬件平台被认为是嘈杂的中间尺度量子(NISQ)时代设备,这意味着只能在其上运行短程序。Freericks和Zgid将采用混合量子-经典方法来减轻量子噪声的存在,并仅在NISQ机器上运行计算的最重要部分,而其余部分将在经典计算机上执行。通过这种方式,量子计算机被视为完整计算的加速器或使能器。Freericks和Zgid将研究两个问题:(i)通过增加噪声测量的数量,如何有效地权衡程序的长度?以及(ii)通过适合于在NISQ设备上运行的虚拟稀疏哈密顿算子来近似真实的量子化学哈密顿算子,同时仍然产生优异的分子能量和动力学,其精确度如何。在这个项目的教育部分,Freericks博士将为一本名为《没有微积分的量子力学》的书设计特定于化学的材料;这本书致力于开发数学先决条件低得多的量子力学课程。Dominika Zgid将为F.E.M.M.E.S.准备一系列研讨会。原则上,存在许多算法和策略来解决量子计算机上化学中的电子结构问题,但理论可能性和近期设备的计算现实之间仍然存在巨大的鸿沟。Freericks和Zgid打算通过提供在量子计算机上解决电子结构问题的实际实现来跨越这一鸿沟。Freericks和他的小组将采用酉耦合团簇模型(UCC)的因式分解形式,在波函数模型中处理少量精确项,因此需要在准备的波函数中优化少量参数。然后,通过将能量期望值扩展到针对大量附加“虚拟”幅度的UCC模拟的幅度中的二阶来补充。然后通过在经典计算机上解决行缩减问题来完成优化。这就在电路深度与测量值之间进行了权衡。为了进一步减少电路深度,Zgid和她的团队将采用一种有效的方法来产生适用于NISQ器件的超稀疏哈密顿。这种方法是基于分子的自能,并假设自能的动力学部分将从精确的分子系统通过动态自能映射方法(DSEM)的稀疏哈密顿描述的系统translatable。对于更广泛的影响,Freericks的工作使用了所谓的因子分解方法,采用算子方法(不同于波函数和矩阵方法),更适合在未来的研究工作中训练学生,因为研究通常涉及与算子一起工作。Zgid更广泛的影响工作主要包括一个旨在激发中学年龄女孩未来从事科学事业的推广计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-Shot Factorization Approach to Bound States in Quantum Mechanics
量子力学中束缚态的单次分解方法
- DOI:10.3390/sym16030297
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Mazhar, Anna;Canfield, Jeremy;Mathews, Jr. Wesley;Freericks, James K.
- 通讯作者:Freericks, James K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Freericks其他文献
Time-resolved photoemission of correlated electrons driven out of equilibrium
失去平衡的相关电子的时间分辨光发射
- DOI:
10.1103/physrevb.81.165112 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
Brian Moritz;Brian Moritz;T. Devereaux;T. Devereaux;James Freericks - 通讯作者:
James Freericks
Dynamical mean-field theory for strongly correlated inhomogeneous multilayered nanostructures
强相关非均匀多层纳米结构的动态平均场理论
- DOI:
10.1103/physrevb.70.195342 - 发表时间:
2004 - 期刊:
- 影响因子:3.7
- 作者:
James Freericks - 通讯作者:
James Freericks
Exact solution for Bloch oscillations of a simple charge-density-wave insulator
简单电荷密度波绝缘体布洛赫振荡的精确解
- DOI:
10.1103/physrevb.89.235129 - 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Wen Shen;T. Devereaux;James Freericks - 通讯作者:
James Freericks
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
- DOI:
10.1109/hpcmp-ugc.2010.17 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
James Freericks;H. R. Krishnamurthy;Pierre Carrier;Yousef Saad - 通讯作者:
Yousef Saad
Magnetic phase diagram of the Hubbard model.
哈伯德模型的磁相图。
- DOI:
10.1103/physrevlett.74.186 - 发表时间:
1994 - 期刊:
- 影响因子:8.6
- 作者:
James Freericks;M. Jarrell - 通讯作者:
M. Jarrell
James Freericks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Freericks', 18)}}的其他基金
Engineering Reservoirs and Optimizing Response Function Measurements in Quantum Simulators and Computers
工程储层和优化量子模拟器和计算机中的响应函数测量
- 批准号:
1915130 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
QLC: EAGER: Collaborative Research: New Design for Quantum Chemistry Calculations on Emerging Quantum Computers
QLC:EAGER:协作研究:新兴量子计算机上量子化学计算的新设计
- 批准号:
1836497 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ion-Trap-Based Quantum Computers: From Benchmarking to Outperforming Classical Digital Computers
基于离子阱的量子计算机:从基准测试到超越经典数字计算机
- 批准号:
1620555 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PIF: Beyond Adiabatic State Preparation with Ultracold Trapped Ion Quantum Simulators
PIF:使用超冷俘获离子量子模拟器进行超越绝热态的制备
- 批准号:
1314295 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Transport and Nonequilibrium Effects in Strongly Correlated Multilayer Nanostructure
强相关多层纳米结构中的输运和非平衡效应
- 批准号:
1006605 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH:DEVELOPMENT OF EFFICIENT PETASCALE ALGORITHMS FOR INHOMOGENEOUSQUANTUM-MECHANICAL SYSTEMS
合作研究:针对非均匀量子力学系统开发高效的千万亿级算法
- 批准号:
0904597 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling Strongly Correlated Multilayered Nanostructures for use as Thermoelectric Refrigerators
模拟用作热电冰箱的强相关多层纳米结构
- 批准号:
0705266 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NIRT: Computational Design and Optimization of Nanoscale Spintronic and Thermoelectric Devices
NIRT:纳米级自旋电子和热电器件的计算设计和优化
- 批准号:
0210717 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Spintronics 2001; Washington, DC; August 9-11, 2001
自旋电子学2001;
- 批准号:
0108908 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Combining ab initio Methods and many-Body Theory to Describe the Electron-Phonon Interaction in Real Materials
结合从头计算方法和多体理论来描述实际材料中的电子-声子相互作用
- 批准号:
9973225 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312276 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312871 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312873 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312275 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204656 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements: Repeto: Building a Network for Practical Reproducibility in Experimental Computer Science
协作研究:学科改进:Repeto:构建实验计算机科学实用可重复性网络
- 批准号:
2226406 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant