COLLABORATIVE RESEARCH:DEVELOPMENT OF EFFICIENT PETASCALE ALGORITHMS FOR INHOMOGENEOUSQUANTUM-MECHANICAL SYSTEMS

合作研究:针对非均匀量子力学系统开发高效的千万亿级算法

基本信息

  • 批准号:
    0904597
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). With the advent of new supercomputers that employ hundreds of thousands of processors and can compute at speeds approaching one quadrillion operations per second, many grand challenge science problems can be solved which were unsolvable even a few years ago. This team of physicists and computer scientists will develop new computational algorithms based on the so-called Lanczos method, which involves using powers of a sparse matrix multiplying an initial vector, that will find the diagonal of the inverse of large sparse matrices and will find all of the eigenvalues and eigenvectors. The codes that are developed will take into account the specific memory addressing and accessing issues associated with trying to run these codes efficiently on such large machines.These numerical algorithms, which are likely to have wide use within the scientific community, will be applied to two hard scientific problems in this work. The first is to describe how ultracold atoms placed on a so-called optical lattice, where the atoms move along a corrugated "egg-carton-like" surface, interact with each other quantum-mechanically. Working with a group of the world's leading experimental groups in this area, this team will solve a number of theoretical and computational problems related to the behavior of these systems. The problems are inherently difficult because the atoms are placed in a trap, like particles sitting in a bowl, which makes established techniques very difficult to employ on these systems. The second problem is the behavior of a quantum spin glass. Glassy behavior is an inherently difficult problem, because the disorder breaks the periodicity of the system, and makes it challenging to solve. Conventional methods like quantum Monte Carlo simulations fail due to the frustrated nature of the spins. Our work, based on an extension of high temperature series expansions to be able to describe low-temperature properties, will allow one to accurately probe the ground state properties of these fascinating systems which are believed to display either topological order or emergent cooperative behavior.The team will also investigate the productivity trade offs associated with the use of modern parallel programming models, such as the partitioned global address space (PGAS), particularly UPC, for this class of problems. The general purpose numerical codes developed under this grant will be distributed via the GNU public license. This project will also train younger researchers in large scale scientific computing.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。随着新型超级计算机的出现,这些计算机拥有数十万个处理器,运算速度接近每秒一千万亿次,许多甚至在几年前还无法解决的重大挑战科学问题可以得到解决。这个由物理学家和计算机科学家组成的团队将基于所谓的Lanczos方法开发新的计算算法,该方法涉及使用稀疏矩阵的幂乘以初始向量,从而找到大型稀疏矩阵的逆的对角线,并找到所有的特征值和特征向量。开发的代码将考虑到特定的内存寻址和访问问题,这些问题与试图在如此大的机器上有效地运行这些代码有关。这些可能在科学界广泛使用的数值算法将在本工作中应用于两个科学难题。第一个是描述放置在所谓的光学晶格上的超冷原子是如何以量子力学的方式相互作用的。在光学晶格中,原子沿着波纹状的“蛋盒状”表面运动。该团队将与该领域的一组世界领先的实验小组合作,解决与这些系统行为相关的一些理论和计算问题。这些问题本身就很困难,因为原子被放置在一个陷阱中,就像粒子坐在碗里一样,这使得现有的技术很难应用于这些系统。第二个问题是量子自旋玻璃的行为。玻璃态行为本身就是一个困难的问题,因为无序破坏了系统的周期性,使其具有挑战性。传统的方法,如量子蒙特卡罗模拟失败,由于自旋受挫的性质。我们的工作,基于高温级数展开的扩展,能够描述低温性质,将允许人们准确地探测这些迷人系统的基态性质,这些系统被认为是显示拓扑秩序或紧急合作行为。该团队还将研究与使用现代并行编程模型(如分区全局地址空间(PGAS),特别是UPC)相关的生产力权衡,以解决这类问题。根据本授权开发的通用数字代码将通过GNU公共许可证分发。该项目还将培养大规模科学计算领域的年轻研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Freericks其他文献

Time-resolved photoemission of correlated electrons driven out of equilibrium
失去平衡的相关电子的时间分辨光发射
  • DOI:
    10.1103/physrevb.81.165112
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Brian Moritz;Brian Moritz;T. Devereaux;T. Devereaux;James Freericks
  • 通讯作者:
    James Freericks
Dynamical mean-field theory for strongly correlated inhomogeneous multilayered nanostructures
强相关非均匀多层纳米结构的动态平均场理论
  • DOI:
    10.1103/physrevb.70.195342
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    James Freericks
  • 通讯作者:
    James Freericks
Exact solution for Bloch oscillations of a simple charge-density-wave insulator
简单电荷密度波绝缘体布洛赫振荡的精确解
  • DOI:
    10.1103/physrevb.89.235129
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wen Shen;T. Devereaux;James Freericks
  • 通讯作者:
    James Freericks
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
Magnetic phase diagram of the Hubbard model.
哈伯德模型的磁相图。
  • DOI:
    10.1103/physrevlett.74.186
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    James Freericks;M. Jarrell
  • 通讯作者:
    M. Jarrell

James Freericks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Freericks', 18)}}的其他基金

Collaborative Research: Practical strategies for implementing quantum chemistry on near-term quantum computers
合作研究:在近期量子计算机上实施量子化学的实用策略
  • 批准号:
    2154671
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Engineering Reservoirs and Optimizing Response Function Measurements in Quantum Simulators and Computers
工程储层和优化量子模拟器和计算机中的响应函数测量
  • 批准号:
    1915130
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: New Design for Quantum Chemistry Calculations on Emerging Quantum Computers
QLC:EAGER:协作研究:新兴量子计算机上量子化学计算的新设计
  • 批准号:
    1836497
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Ion-Trap-Based Quantum Computers: From Benchmarking to Outperforming Classical Digital Computers
基于离子阱的量子计算机:从基准测试到超越经典数字计算机
  • 批准号:
    1620555
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
PIF: Beyond Adiabatic State Preparation with Ultracold Trapped Ion Quantum Simulators
PIF:使用超冷俘获离子量子模拟器进行超越绝热态的制备
  • 批准号:
    1314295
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Transport and Nonequilibrium Effects in Strongly Correlated Multilayer Nanostructure
强相关多层纳米结构中的输运和非平衡效应
  • 批准号:
    1006605
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Modeling Strongly Correlated Multilayered Nanostructures for use as Thermoelectric Refrigerators
模拟用作热电冰箱的强相关多层纳米结构
  • 批准号:
    0705266
  • 财政年份:
    2007
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
NIRT: Computational Design and Optimization of Nanoscale Spintronic and Thermoelectric Devices
NIRT:纳米级自旋电子和热电器件的计算设计和优化
  • 批准号:
    0210717
  • 财政年份:
    2002
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Spintronics 2001; Washington, DC; August 9-11, 2001
自旋电子学2001;
  • 批准号:
    0108908
  • 财政年份:
    2001
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Combining ab initio Methods and many-Body Theory to Describe the Electron-Phonon Interaction in Real Materials
结合从头计算方法和多体理论来描述实际材料中的电子-声子相互作用
  • 批准号:
    9973225
  • 财政年份:
    1999
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了