Design of Experiments (DOE) Based Automatic Process Control (APC): A Methodology for Process Variation Reduction Beyond Robust Parameter Design

基于实验设计 (DOE) 的自动过程控制 (APC):一种超越稳健参​​数设计的减少过程变化的方法

基本信息

项目摘要

This project focuses on the development of automatic process control (APC) methodologies based on Design of Experiments (DOE) regression models and real-time measurement or estimation of noise factors. The central idea of the proposed research is to develop a methodology to achieve automatic process control by integrating the disciplines of DOE, SPC, and control and estimation theory. Various fundamental issues will be studied, which include: (1) a new classification of controllable factors and noise factors applicable to serve as feedback information for APC; (2) test design and analysis of DOE for process modeling with consideration of system identifiability for the control purpose; (3) cautious control strategy with consideration of uncertainties in DOE regression models and noise factor estimation; and (4) on-line DOE model updating and adaptive control with supervision.The success of the research will lead to a new scientific basis and practical tools for designing and implementing APC in complex manufacturing processes. The research expands the existing theory in each of the three well-developed disciplines of DOE, SPC, and APC to form a new "DOE-based APC" methodology. This new methodology, in conjunction with robust design and SPC, will provide more effective techniques for a broad range of manufacturing processes. Examples of such processes include stamping, forging, semiconductor, and composite material manufacturing processes.
该项目致力于开发基于实验设计(DOE)回归模型和噪声因素实时测量或估计的自动过程控制(APC)方法。这项研究的中心思想是通过整合能源部、统计过程控制和控制与评估理论的学科,开发一种实现自动化过程控制的方法学。研究的基本问题包括:(1)适用于APC的可控因素和噪声因素的新分类;(2)考虑系统可辨识性的用于过程建模的DOE的测试设计和分析;(3)考虑DOE回归模型和噪声因素估计的不确定性的谨慎控制策略;(4)DOE模型的在线更新和带监督的自适应控制。这项研究扩展了能源部、SPC和APC三个成熟学科的现有理论,形成了一种新的基于能源部的APC方法论。这一新方法与稳健设计和SPC相结合,将为广泛的制造工艺提供更有效的技术。这类工艺的例子包括冲压、锻造、半导体和复合材料制造工艺。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianjun (Jan) Shi其他文献

Jianjun (Jan) Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianjun (Jan) Shi', 18)}}的其他基金

Proactive Maintenance: Integration of Engineering, Statistics, and Operations Research Towards a General Framework and Methodology
主动维护:工程、统计和运筹学的整合,形成总体框架和方法
  • 批准号:
    9713654
  • 财政年份:
    1997
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
CAREER: In-process Quality Improvement Methodologies and Implementation in Manufacturing
职业:制造过程中的质量改进方法和实施
  • 批准号:
    9624402
  • 财政年份:
    1996
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
  • 批准号:
    2327327
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Research Grant
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Fellowship
Beyond experiments: scaling transformative, sustainable business models in the UK
超越实验:在英国扩展变革性、可持续的商业模式
  • 批准号:
    MR/X035786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Fellowship
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
  • 批准号:
    ST/W003880/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Fellowship
Scientific Information and Sustainable Farm Production: Evidence from Field Experiments with Soil Tests for Small-scale Farms in Vietnam
科学信息和可持续农业生产:越南小型农场土壤测试现场实验的证据
  • 批准号:
    24K16354
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036867/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Research Grant
CAREER: Learning mechanistic models with automated experiments
职业:通过自动化实验学习机械模型
  • 批准号:
    2339026
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了