ITR: Superimposed Training for Wireless Fading Channels
ITR:无线衰落信道的叠加训练
基本信息
- 批准号:0218778
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
G. Tong ZhouGeorgia Tech Research CorpA major challenge in wireless communications is that the channel changes, sometimes rapidly; thus channel state information needs to be acquired frequently before the symbol recovery stage. Two prevalent approaches for channel estimation are training based and self-recovering (i.e., blind) ones. Pilot symbol assisted modulation (PSAM) is a popular training method, in which known pilots are periodically inserted into the symbol stream prior to transmission. These pilot symbols occupy time slots and impose a recurring transmission overhead. Blind approaches on the other hand, are completely data-driven with no loss of information rate but a significant increase in complexity. For fast fading channels, blind algorithms may require too many data to converge or converge too slowly to be practical.This research investigates a class of superimposed training algorithms that combine the best of both worlds. Instead of inserting pilots as in PSAM, known periodic pilots are superimposed onto the symbol stream, prior to waveform modulation. The channel estimation algorithm may appear to be blind, but is superior to blind approaches because simple first-order, and no more than second-order statistical methods, are used for channel estimation. The superimposed training approach can also be viewed as a watermarking technique with the pilot sequence serving as the marker. It is shown to be applicable to a variety of wireless channels: frequency selective, time selective, and doubly selective fading channels, as well as nonlinear channels. Issues investigated include trade-offs among bit error rate, transmission power, information rate and capacity, as well as optimization of pilot strength, transmission power allocation, and the effect of the added pilots on nonlinear power amp!lifiers.
在无线通信中的主要挑战是信道的变化,有时是快速的;因此,在符号恢复阶段之前,需要频繁地获取信道状态信息。目前流行的两种信道估计方法是基于训练的方法和自恢复(即盲)方法。导频符号辅助调制(PSAM)是一种流行的训练方法,其中已知导频在传输之前被周期性地插入到符号流中。这些导频符号占用时隙并施加重复的传输开销。另一方面,盲目方法完全是数据驱动的,不会损失信息率,但会显著增加复杂性。对于快衰落信道,盲算法可能需要太多的数据才能收敛,或者收敛速度太慢而不能实用。不是像在PSAM中那样插入导频,而是在波形调制之前将已知的周期性导频叠加到符号流上。该信道估计算法可能看起来是盲的,但由于使用简单的一阶且不超过二阶统计方法来进行信道估计,因此优于盲方法。叠加训练方法也可以被视为以导频序列作为标记的水印技术。它适用于多种无线信道:频率选择性、时间选择性、双选择性衰落信道,以及非线性信道。研究的问题包括误码率、发射功率、信息率和容量之间的权衡,以及导频强度的优化、发射功率的分配以及增加的导频对非线性功率放大器的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guotong Zhou其他文献
Guotong Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guotong Zhou', 18)}}的其他基金
Workshop on Genomic Signal Processing and Statistics
基因组信号处理与统计研讨会
- 批准号:
0231396 - 财政年份:2002
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
POWRE: Quantitative Behavioral Analysis of a Simple Animal
POWRE:简单动物的定量行为分析
- 批准号:
9973799 - 财政年份:1999
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Signal Models for Neuronal and Electrophysiological Activities - A Planning Grant Proposal
神经元和电生理活动的信号模型 - 规划拨款提案
- 批准号:
9615565 - 财政年份:1997
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
CAREER: A Research, Education, and Technology Transfer Proposal in Statistical Signal Processing with Emphasis on Nonlinear System Identification
职业:统计信号处理方面的研究、教育和技术转让提案,重点是非线性系统辨识
- 批准号:
9703312 - 财政年份:1997
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
相似海外基金
Structural integrity engineering of FeCrAl-ODS in lead-cooled SMR under superimposed stress-corrosion environment
叠加应力腐蚀环境下铅冷SMR中FeCrAl-ODS结构完整性工程
- 批准号:
23H01895 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
X-linked Hypophosphatemic Rickets (XLH), a Primary Skeletal Dysplasia with Superimposed Rickets
X连锁低磷血症性佝偻病(XLH),一种原发性骨骼发育不良伴叠加性佝偻病
- 批准号:
478164 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Operating Grants
Engaging Hospitalized Patients and Family Caregivers to Identify and Prevent Delirium Superimposed on Dementia: An Intervention Mapping Approach.
让住院患者和家庭护理人员参与识别和预防痴呆症叠加的谵妄:一种干预映射方法。
- 批准号:
10642332 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Clarification of the mechanism of combined and superimposed seismic loads acting on a long-period bridge structure
阐明联合叠加地震荷载作用于长周期桥梁结构的机理
- 批准号:
22H01569 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evolution of Groundwater Systems: Effects of Long-Acting Natural and Superimposed Anthropogenic Stressors
地下水系统的演变:长效自然和叠加的人为压力源的影响
- 批准号:
RGPIN-2020-07228 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual
Immunovascular interactions in postoperative delirium superimposed on dementia (DSD).
术后谵妄叠加痴呆(DSD)时的免疫血管相互作用。
- 批准号:
10524797 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Mechanism to retrofit interactive tutorial instructions superimposed on web applications
改进叠加在 Web 应用程序上的交互式教程指令的机制
- 批准号:
21K12136 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolution of Groundwater Systems: Effects of Long-Acting Natural and Superimposed Anthropogenic Stressors
地下水系统的演变:长效自然和叠加的人为压力源的影响
- 批准号:
RGPIN-2020-07228 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual
Major Burn Injury and its Effects on Acute and Superimposed Surgical Pain
严重烧伤及其对急性和叠加手术疼痛的影响
- 批准号:
10033365 - 财政年份:2020
- 资助金额:
$ 29万 - 项目类别:
Evolution of Groundwater Systems: Effects of Long-Acting Natural and Superimposed Anthropogenic Stressors
地下水系统的演变:长效自然和叠加的人为压力源的影响
- 批准号:
RGPIN-2020-07228 - 财政年份:2020
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




