High-Resolution Imagery and Terrain Model for Collaborative Research of Environmental Change at Barrow, Alaska
阿拉斯加巴罗环境变化合作研究的高分辨率图像和地形模型
基本信息
- 批准号:0224071
- 负责人:
- 金额:$ 22.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-12-01 至 2006-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This projects will create and release of three suites of spatial data products. The first is high-resolution, orthorectified radar imagery (ORRI, with 1.25 m grid cell spacing) and a co-registered, high-resolution Digital Elevation Model (DEM; 5 m grid cell spacing; 1 m vertical accuracy). The second suite is satellite imagery purchased through AeroMap U.S., specifically orthorectified panchromatic (0.7 m grid cells) and multispectral (2.8 m grid cells) imagery acquired by DigitalGlobe with the new QuickBird satellite. Third is a time-series set of orthorectified air-photo mosaics. After processing, the DEM and imagery would be made available to all NSF-funded researchers through the ARCSS Data Coordination Center.In the vicinity of Barrow, Alaska including the Barrow Environmental Observatory (BEO) there are more than 35 currently funded NSF research projects. These multi- and interdisciplinary studies primarily address local to global effects of environmental sensitivity and climate change. Many of the projects utilize quantitative spatial analysis through remote sensing and Geographic Information Systems (GIS). Others would utilize high-resolution spatial datasets if they were available. On a project by project basis, research groups work piecemeal with spatial data for their own, small, disconnected field areas. Sharing datasets is difficult due to differences in map projection, datum, data format, extent, and distribution channels. This new activity will provide the research community high-resolution data and images resulting in tangible scientific benefits across numerous disciplines, increasing the efficiency and significance of current and future research. On-going projects that would benefit are research on ecosystem dynamics, terrestrial-atmospheric fluxes of greenhouse gases, landscape dynamics, coastal flooding and erosion, permafrost melting, other environmental responses to unprecedented arctic warming, and other topics. These environmentally and societally relevant scientific problems can be addressed in new ways and with greater success using digital topography and imagery. By orders of magnitude, the spatial datasets would be more precise, accurate, and useful than existing data layers. They would permit state-of-the-art analysis for years to come, and would establish a temporal baseline for decades of change-detection studies. This vision is shared by this proposal's twelve collaborators from eight research institutions. With shared needs for high quality spatial information, a modest effort now would leverage results and promote interdisciplinary collaboration.
该项目将创建和发布三套空间数据产品。 第一种是高分辨率正射校正雷达图像(ORRI,网格单元间距为1.25米)和一个共同配准的高分辨率数字高程模型(DEM;网格单元间距为5米;垂直精度为1米)。第二套是通过美国航空地图公司购买的卫星图像,特别是经正射校正的全色(0.7米网格单元)和多光谱(2.8米网格单元)图像,这些图像是由DigitalGlobe公司利用新的QuickBird卫星获得的。 第三个是一个时间序列的正射纠正航空照片马赛克集。 经过处理后,DEM和图像将通过ARCSS数据协调中心提供给所有NSF资助的研究人员。在阿拉斯加的巴罗附近,包括巴罗环境观测站(BEO),目前有超过35个NSF资助的研究项目。 这些多学科和跨学科的研究主要解决环境敏感性和气候变化对当地和全球的影响。许多项目通过遥感和地理信息系统利用定量空间分析。 其他国家将利用现有的高分辨率空间数据集。 在一个项目接一个项目的基础上,研究小组为他们自己的、小的、不相连的领域使用空间数据。由于地图投影、基准面、数据格式、范围和分发渠道的差异,共享数据集很困难。这项新活动将为研究界提供高分辨率的数据和图像,从而在众多学科中产生切实的科学效益,提高当前和未来研究的效率和意义。正在进行的项目将受益于生态系统动力学,温室气体的陆地-大气通量,景观动力学,沿海洪水和侵蚀,永久冻土融化,对前所未有的北极变暖的其他环境反应和其他主题的研究。这些与环境和社会有关的科学问题可以用新的方式加以解决,并利用数字地形和图像取得更大的成功。 从数量级来看,空间数据集将比现有数据层更精确、更准确、更有用。它们将允许在未来几年进行最先进的分析,并将为几十年的变化检测研究建立一个时间基线。这一愿景得到了来自8个研究机构的12位合作者的认同。由于对高质量空间信息的共同需求,现在只要作出适度努力,就可以利用成果并促进跨学科合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Manley其他文献
Enhanced maturation of human stem cell derived interneurons by mTOR activation
通过 mTOR 激活促进人类干细胞衍生的中间神经元的成熟
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Chu;Megan L. Fitzgerald;N. Sehgal;William Manley;Shane Fitzgerald;Harrison Naung;Harrison Naung;Ethan M. Goldberg;Ethan M. Goldberg;S. Anderson - 通讯作者:
S. Anderson
Enhanced maturation of fast-spiking interneurons driven by mTOR activation
mTOR 激活驱动的快速尖峰中间神经元的成熟增强
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Chu;N. Sehgal;Megan L. Fitzgerald;William Manley;Shane Fitzgerald;Harrison Naung;Ethan M. Goldberg;S. Anderson - 通讯作者:
S. Anderson
William Manley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Manley', 18)}}的其他基金
Spatial Analysis and Calibration of Glacier-Climate Relationships across Alaska
阿拉斯加冰川与气候关系的空间分析和校准
- 批准号:
0081379 - 财政年份:2000
- 资助金额:
$ 22.18万 - 项目类别:
Continuing Grant
Collaborative Research: Paleoglaciology of Alaska -- Climate Parameters during the Last Glacial Maximum from GIS Determination of Equilibrium Line Altitudes
合作研究:阿拉斯加古冰川学——根据 GIS 确定的末次盛冰期气候参数确定平衡线高度
- 批准号:
9977972 - 财政年份:1999
- 资助金额:
$ 22.18万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Making Digital Imagery Accessible to Blind and Low-Vision Users via Audiohaptic Dioramas
职业:通过视听立体模型让盲人和弱视用户可以访问数字图像
- 批准号:
2339788 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Continuing Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Fellowship
Sediment connectivity in large landslides based on quality-maximized digital elevation models derived from historical aerial photography and UAV imagery
基于源自历史航空摄影和无人机图像的质量最大化数字高程模型的大型滑坡中的沉积物连通性
- 批准号:
24K04397 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated analysis of volcano imagery with machine learning techniques
利用机器学习技术自动分析火山图像
- 批准号:
2908452 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Studentship
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Research Grant
CRII: SaTC: RUI: Understanding and Collectively Mitigating Harms from Deepfake Imagery
CRII:SaTC:RUI:理解并共同减轻 Deepfake 图像的危害
- 批准号:
2348326 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Standard Grant
Investigating how visual imagery influences cognition
研究视觉意象如何影响认知
- 批准号:
DE240100606 - 财政年份:2024
- 资助金额:
$ 22.18万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the role of mental imagery in cognition and behaviour
了解心理意象在认知和行为中的作用
- 批准号:
FT220100388 - 财政年份:2023
- 资助金额:
$ 22.18万 - 项目类别:
ARC Future Fellowships
Self-supervised feature learning for rapid processing of marine imagery
用于快速处理海洋图像的自监督特征学习
- 批准号:
LP220200949 - 财政年份:2023
- 资助金额:
$ 22.18万 - 项目类别:
Linkage Projects
Explainable Population Estimation Using Deep Learning from Satellite Imagery
使用卫星图像深度学习进行可解释的人口估计
- 批准号:
2890100 - 财政年份:2023
- 资助金额:
$ 22.18万 - 项目类别:
Studentship