New Developments in Longitudinal and Heterogeneous Data Analysis with Applications to the Social and Behavioral Sciences

纵向和异构数据分析的新进展及其在社会和行为科学中的应用

基本信息

  • 批准号:
    0241859
  • 负责人:
  • 金额:
    $ 6.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-04-01 至 2006-03-31
  • 项目状态:
    已结题

项目摘要

This research will develop new statistical methodologies and models for the analysis of categorical response data that occur frequently in the social and behavioral sciences. The main objective is to address some statistical issues that are related to the analysis of complex longitudinal and heterogeneous data when standard models such as the generalized linear models are inadequate. The research will explore several distinct modeling issues including, among others, parametric transformations of independent variables (covariates), the development of growth curve models for large-scale longitudinal social study data, and adapting heteroscedasticity in generalized linear models with non-parametrically scaled link functions. New methods and algorithms in estimations and inferences will be developed, including: 1) developing a general computing method for estimating transformation and regression parameters in covariate transformation models; 2) providing a stochastic-approximation-based computing algorithm for general mixed-effects models; and 3) developing efficient estimating equations for models with non-parametrically scaled link functions. The research also will develop large-sample-based supporting theories for the proposed methodologies. The research topics originally stemmed from some specific consulting projects in the social and behavioral sciences, but the methodologies to be developed are very general, with potential applications to many complex data analysis problems.
这项研究将开发新的统计方法和模型,用于分析社会和行为科学中经常出现的分类反应数据。 主要目标是解决一些统计问题,涉及到复杂的纵向和异质性数据的分析时,标准模型,如广义线性模型是不够的。 该研究将探讨几个不同的建模问题,其中包括自变量(协变量)的参数转换,大规模纵向社会研究数据的增长曲线模型的发展,以及在非参数化缩放链接函数的广义线性模型中适应异方差。 将开发估计和推理方面的新方法和算法,包括:1)开发协变量转换模型中转换和回归参数估计的通用计算方法; 2)为一般混合效应模型提供基于随机逼近的计算算法; 3)为具有非参数缩放链接函数的模型开发高效的估计方程。 研究还将为所提出的方法开发基于大样本的支持理论。 研究主题最初源于社会和行为科学中的一些特定咨询项目,但要开发的方法非常通用,可能应用于许多复杂的数据分析问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minge Xie其他文献

Additive effects among uterine paracrine factors in promoting bovine trophoblast cell proliferation
子宫旁分泌因子促进牛滋养层细胞增殖的叠加作用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minge Xie
  • 通讯作者:
    Minge Xie
Impact of measurement error on container inspection policies at port-of-entry
  • DOI:
    10.1007/s10479-010-0681-6
  • 发表时间:
    2010-01-27
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Yada Zhu;Mingyu Li;Christina M. Young;Minge Xie;Elsayed A. Elsayed
  • 通讯作者:
    Elsayed A. Elsayed
Utility of the Activity Measure for Post-Acute Care (AM-PAC) as a Measure of Functional Recovery Across the TBI Rehabilitation Continuum
急性后期照护活动量表(AM - PAC)在创伤性脑损伤康复连续过程中作为功能恢复衡量指标的效用
  • DOI:
    10.1016/j.apmr.2025.01.371
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Monique Tremaine;Hayk Petrosyan;Minge Xie;Onrina Chandra;Shelby Hinchman
  • 通讯作者:
    Shelby Hinchman

Minge Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minge Xie', 18)}}的其他基金

Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
ATD: Anomaly Detection with Confidence and Precision
ATD:充满信心且精确的异常检测
  • 批准号:
    2027855
  • 财政年份:
    2020
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Repro Sampling Method: A Transformative Artificial-Sample-Based Inferential Framework with Applications to Discrete Parameter, High-Dimensional Data, and Rare Events Inferences
再现采样方法:一种基于人工样本的变革性推理框架,应用于离散参数、高维数据和稀有事件推理
  • 批准号:
    2015373
  • 财政年份:
    2020
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Confidence Distribution (CD) and Efficient Approaches for Combining Inferences from Massive Complex Data
置信分布 (CD) 和结合海量复杂数据推论的有效方法
  • 批准号:
    1513483
  • 财政年份:
    2015
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Conference on Advanced Statistical Methods for Underground Seismic Event Monitoring and Verification
地下地震事件监测与验证先进统计方法会议
  • 批准号:
    1309312
  • 财政年份:
    2013
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
New Developments on Confidence Distributions (CDs) and Statistical Inference: Theory, Methodology and Applications
置信分布(CD)和统计推断的新进展:理论、方法和应用
  • 批准号:
    1107012
  • 财政年份:
    2011
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing Grant
An Effective Methodology for Combining Information from Independent Sources with Applications to Social and Behavioral Sciences and Medical Research
将独立来源的信息与社会和行为科学以及医学研究的应用相结合的有效方法
  • 批准号:
    0851521
  • 财政年份:
    2009
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
ATD: Statistical Methods for Nuclear Material Surveillance Using Mobile Sensors
ATD:使用移动传感器进行核材料监测的统计方法
  • 批准号:
    0915139
  • 财政年份:
    2009
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing Grant
Messy Data Modeling and Related Topics
凌乱数据建模及相关主题
  • 批准号:
    9803273
  • 财政年份:
    1998
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了