Confidence Distribution (CD) and Efficient Approaches for Combining Inferences from Massive Complex Data

置信分布 (CD) 和结合海量复杂数据推论的有效方法

基本信息

  • 批准号:
    1513483
  • 负责人:
  • 金额:
    $ 44.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Modern powerful data acquisition technology has greatly facilitated the collection of massive data, often with heterogeneous and complex structures, in many domains. Those data are used for drawing inferences for scientific discoveries or marketing values. In practice, the data often involve multiple studies or subpopulations, each with its own data source, targeting the same hypotheses or parameters. In such cases, coherent and efficient overall inference methods for combining findings from individual studies would be needed. The need for efficient combining inferences also arises in the implementation and development of different algorithmic or high-performance computing methods in dealing with big data. The goal of this project is to apply the statistical concept of confidence distribution to developing novel efficient approaches for combining multiple inferences from different sources and in massive complex data settings. Such approaches should be timely and useful for many domains, including health and medicine, market analysis, information retrieval, aviation safety, homeland security, just to name a few. This project builds on the recent exciting developments from the so-called "confidence distribution" to develop fusion learning for massive data. It focuses on three specific developments: 1) Efficient nonparametric fusion learning: an efficient nonparametric approach for combining individual inferences from multiple studies that has implementable algorithms and full theoretical support. The development is nonparametric and data driven, which is broadly applicable with little model assumptions. 2) Efficient fusion learning for the split-conquer-combine approach for handling massive and possibly heterogeneous data: This research utilizes the idea of parallel computing to develop several split-conquer-combine schemes for analysis of massive data. The approach can reduce substantially the computational expenses and yet still achieve the oracle inference outcome associated with the entire data. 3) Fusion learning in prediction and testing: The research develops and generalizes the theoretical framework of inference for prediction and testing based on confidence distributions. This development helps mitigate several well known difficulties surrounding multiple testing, model selection problems, especially in the setting of big data. Overall, the project involves in-depth theoretical development and real problem solving in complex data. It is ideally suited for collaborative research and active participation from students.
现代强大的数据采集技术极大地方便了许多领域的海量数据的收集,这些数据往往具有异构性和复杂的结构。这些数据被用来为科学发现或营销价值做出推断。在实践中,这些数据通常涉及多个研究或分组,每个研究或分组都有自己的数据源,目标是相同的假设或参数。在这种情况下,需要连贯和有效的总体推论方法,以结合个别研究的结果。在处理大数据的不同算法或高性能计算方法的实施和开发中,也出现了对有效组合推理的需求。该项目的目标是将置信度分布的统计学概念应用于开发新的有效方法,以组合来自不同来源的大量复杂数据环境中的多种推断。这种方法应该对许多领域是及时和有用的,包括卫生和医药、市场分析、信息检索、航空安全、国土安全,仅举几例。这个项目建立在所谓的“置信度分布”的最新令人兴奋的发展的基础上,以开发针对海量数据的融合学习。1)有效的非参数融合学习:一种高效的非参数融合学习方法,用于组合来自多个研究的个体推理,具有可实现的算法和充分的理论支持。开发是非参数的和数据驱动的,只需很少的模型假设即可广泛适用。2)用于处理海量和可能的异质数据的拆分-征服-合并方法的有效融合学习:本研究利用并行计算的思想,提出了几种用于分析海量数据的拆分-征服-合并方案。该方法可以大大减少计算开销,但仍然可以得到与整个数据关联的Oracle推理结果。3)预测和测试中的融合学习:本研究发展和推广了基于置信度分布的预测和测试推理的理论框架。这一发展有助于缓解围绕多个测试和模型选择问题的几个众所周知的困难,特别是在大数据设置方面。总体而言,该项目涉及深入的理论发展和复杂数据中的实际问题解决。它非常适合合作研究和学生的积极参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minge Xie其他文献

Additive effects among uterine paracrine factors in promoting bovine trophoblast cell proliferation
子宫旁分泌因子促进牛滋养层细胞增殖的叠加作用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minge Xie
  • 通讯作者:
    Minge Xie
Impact of measurement error on container inspection policies at port-of-entry
  • DOI:
    10.1007/s10479-010-0681-6
  • 发表时间:
    2010-01-27
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Yada Zhu;Mingyu Li;Christina M. Young;Minge Xie;Elsayed A. Elsayed
  • 通讯作者:
    Elsayed A. Elsayed
Utility of the Activity Measure for Post-Acute Care (AM-PAC) as a Measure of Functional Recovery Across the TBI Rehabilitation Continuum
急性后期照护活动量表(AM - PAC)在创伤性脑损伤康复连续过程中作为功能恢复衡量指标的效用
  • DOI:
    10.1016/j.apmr.2025.01.371
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Monique Tremaine;Hayk Petrosyan;Minge Xie;Onrina Chandra;Shelby Hinchman
  • 通讯作者:
    Shelby Hinchman

Minge Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minge Xie', 18)}}的其他基金

Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
ATD: Anomaly Detection with Confidence and Precision
ATD:充满信心且精确的异常检测
  • 批准号:
    2027855
  • 财政年份:
    2020
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
Repro Sampling Method: A Transformative Artificial-Sample-Based Inferential Framework with Applications to Discrete Parameter, High-Dimensional Data, and Rare Events Inferences
再现采样方法:一种基于人工样本的变革性推理框架,应用于离散参数、高维数据和稀有事件推理
  • 批准号:
    2015373
  • 财政年份:
    2020
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
Conference on Advanced Statistical Methods for Underground Seismic Event Monitoring and Verification
地下地震事件监测与验证先进统计方法会议
  • 批准号:
    1309312
  • 财政年份:
    2013
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
New Developments on Confidence Distributions (CDs) and Statistical Inference: Theory, Methodology and Applications
置信分布(CD)和统计推断的新进展:理论、方法和应用
  • 批准号:
    1107012
  • 财政年份:
    2011
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Continuing Grant
An Effective Methodology for Combining Information from Independent Sources with Applications to Social and Behavioral Sciences and Medical Research
将独立来源的信息与社会和行为科学以及医学研究的应用相结合的有效方法
  • 批准号:
    0851521
  • 财政年份:
    2009
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
ATD: Statistical Methods for Nuclear Material Surveillance Using Mobile Sensors
ATD:使用移动传感器进行核材料监测的统计方法
  • 批准号:
    0915139
  • 财政年份:
    2009
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Continuing Grant
New Developments in Longitudinal and Heterogeneous Data Analysis with Applications to the Social and Behavioral Sciences
纵向和异构数据分析的新进展及其在社会和行为科学中的应用
  • 批准号:
    0241859
  • 财政年份:
    2003
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
Messy Data Modeling and Related Topics
凌乱数据建模及相关主题
  • 批准号:
    9803273
  • 财政年份:
    1998
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant

相似海外基金

Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
  • 批准号:
    2744014
  • 财政年份:
    2026
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Studentship
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Continuing Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
NESP MaC Project 4.2 – Assessing dugong distribution and abundance in the southern Gulf of Carpentaria 2024-2026 (CDU & JCU)
NESP MaC 项目 4.2 — 评估 2024-2026 年卡奔塔利亚湾南部儒艮分布和丰度 (CDU
  • 批准号:
    global : 718c5de5-6731-4c6e-88e2-8e6afb5d52ad
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
Investigating biosynthesis of the newly discovered natural product euglenatide and distribution across the breadth of Euglenoid algae
研究新发现的天然产物眼虫肽的生物合成及其在眼虫类藻类中的分布
  • 批准号:
    EP/Y003314/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Research Grant
Robust Renewables Hosting Capacity Enhancement for Distribution Networks
强大的可再生能源托管能力增强配电网络
  • 批准号:
    DE240100059
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Discovery Early Career Researcher Award
Exploring Microbial Light-Harvesting with Rhodopsin in Extreme Polar Environments: Unveiling Distribution, Diversity, and Functional Insights
在极端极地环境中探索利用视紫红质进行微生物光捕获:揭示分布、多样性和功能见解
  • 批准号:
    24K03072
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An Artificial Intelligence Engineering System Analysis Assistant (Aiesaa) for auto-creation of integrated transmission-distribution grid models
用于自动创建综合输配电网模型的人工智能工程系统分析助手(Aiesaa)
  • 批准号:
    2329536
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
CC* Data Storage: High-Capacity Active Archive to Enable Economical Data Access and Distribution for Illinois Researchers and the National Community
CC* 数据存储:大容量主动存档,为伊利诺伊州研究人员和国家社区提供经济的数据访问和分发
  • 批准号:
    2346737
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
Membrane Trafficking Pathways Mediate the Intracellular Distribution of Coenzyme Q
膜运输途径介导辅酶 Q 的细胞内分布
  • 批准号:
    2343997
  • 财政年份:
    2024
  • 资助金额:
    $ 44.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了