ATD: Statistical Methods for Nuclear Material Surveillance Using Mobile Sensors

ATD:使用移动传感器进行核材料监测的统计方法

基本信息

  • 批准号:
    0915139
  • 负责人:
  • 金额:
    $ 37.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

The research in this proposal outlines a robust system of a mobile sensor network and develops statistical algorithms and models to provide consistent, pervasive and dynamic surveillance for nuclear or biological materials in major cities. Specifically, the project proposes a novel design of sensor network, in which nuclear sensors and Global Position System (GPS) tracking devices are installed on a large number of vehicles such as taxicabs and police vehicles. Real time information from this network is processed at a central surveillance center, where mathematical and statistical analyses are performed. The proposed statistical approaches include multiple spatial cluster detection method using latent models and state-space model for real-time detection and tracking of possibly moving nuclear sources using sequential Monte Carlo method. The methods are general and flexible and can be used in other settings involving a massive network of sensors. Threats to national and homeland security have become more dynamic and complex in the past decade due to global terrorism, increased opposition to U.S. interests, and increased access by adversaries to sophisticated technologies and materials. Among the threats, nuclear attacks is one of the most devastating acts, with severe losses of human lives as well as long term and large scale damages to infrastructures. As a result, there have been growing concerns regarding the prospect of detonating nuclear materials or dirty bombs in the populous metropolitan areas. It becomes more and more vital to have sophisticated nuclear surveillance and detection systems deployed in major cities in the U.S. to protect infrastructures and human lives. The proposed research on surveillance systems of a mobile sensor network can have broad impacts in advancing our detection capabilities of terrorist threats hence improving homeland security. During the course of the proposed project, activities related to education and training of graduate and undergraduate students will be actively engaged, in preparation for their possible careers in this area.
该提案的研究概述了一个强大的移动的传感器网络系统,并开发了统计算法和模型,以便对主要城市的核材料或生物材料进行一致、普遍和动态的监测。具体而言,该项目提出了一种新颖的传感器网络设计,其中核传感器和全球定位系统(GPS)跟踪设备安装在大量车辆上,如出租车和警车。 来自该网络的真实的实时信息在中央监控中心进行处理,在那里进行数学和统计分析。提出的统计方法包括使用潜在模型的多空间簇检测方法和使用顺序蒙特卡罗方法实时检测和跟踪可能移动的核源的状态空间模型。 该方法是通用的和灵活的,可以用于其他设置涉及一个庞大的传感器网络。 在过去十年中,由于全球恐怖主义、反对美国利益的势力增加以及对手获得尖端技术和材料的机会增加,对国家和国土安全的威胁变得更加动态和复杂。在这些威胁中,核攻击是最具破坏性的行为之一,造成严重的生命损失以及对基础设施的长期和大规模破坏。 因此,人们越来越担心在人口稠密的大都市地区引爆核材料或脏弹的前景。 在美国主要城市部署先进的核监视和探测系统以保护基础设施和人类生命变得越来越重要。拟议中的移动的传感器网络的监视系统的研究可以在提高我们的恐怖威胁的检测能力,从而提高国土安全的广泛影响。在拟议的项目实施过程中,将积极开展与研究生和本科生教育和培训有关的活动,为他们在这一领域可能从事的职业做准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minge Xie其他文献

Additive effects among uterine paracrine factors in promoting bovine trophoblast cell proliferation
子宫旁分泌因子促进牛滋养层细胞增殖的叠加作用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minge Xie
  • 通讯作者:
    Minge Xie
Impact of measurement error on container inspection policies at port-of-entry
  • DOI:
    10.1007/s10479-010-0681-6
  • 发表时间:
    2010-01-27
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Yada Zhu;Mingyu Li;Christina M. Young;Minge Xie;Elsayed A. Elsayed
  • 通讯作者:
    Elsayed A. Elsayed
Utility of the Activity Measure for Post-Acute Care (AM-PAC) as a Measure of Functional Recovery Across the TBI Rehabilitation Continuum
急性后期照护活动量表(AM - PAC)在创伤性脑损伤康复连续过程中作为功能恢复衡量指标的效用
  • DOI:
    10.1016/j.apmr.2025.01.371
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Monique Tremaine;Hayk Petrosyan;Minge Xie;Onrina Chandra;Shelby Hinchman
  • 通讯作者:
    Shelby Hinchman

Minge Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minge Xie', 18)}}的其他基金

Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
ATD: Anomaly Detection with Confidence and Precision
ATD:充满信心且精确的异常检测
  • 批准号:
    2027855
  • 财政年份:
    2020
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Repro Sampling Method: A Transformative Artificial-Sample-Based Inferential Framework with Applications to Discrete Parameter, High-Dimensional Data, and Rare Events Inferences
再现采样方法:一种基于人工样本的变革性推理框架,应用于离散参数、高维数据和稀有事件推理
  • 批准号:
    2015373
  • 财政年份:
    2020
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Confidence Distribution (CD) and Efficient Approaches for Combining Inferences from Massive Complex Data
置信分布 (CD) 和结合海量复杂数据推论的有效方法
  • 批准号:
    1513483
  • 财政年份:
    2015
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Conference on Advanced Statistical Methods for Underground Seismic Event Monitoring and Verification
地下地震事件监测与验证先进统计方法会议
  • 批准号:
    1309312
  • 财政年份:
    2013
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
New Developments on Confidence Distributions (CDs) and Statistical Inference: Theory, Methodology and Applications
置信分布(CD)和统计推断的新进展:理论、方法和应用
  • 批准号:
    1107012
  • 财政年份:
    2011
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Continuing Grant
An Effective Methodology for Combining Information from Independent Sources with Applications to Social and Behavioral Sciences and Medical Research
将独立来源的信息与社会和行为科学以及医学研究的应用相结合的有效方法
  • 批准号:
    0851521
  • 财政年份:
    2009
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
New Developments in Longitudinal and Heterogeneous Data Analysis with Applications to the Social and Behavioral Sciences
纵向和异构数据分析的新进展及其在社会和行为科学中的应用
  • 批准号:
    0241859
  • 财政年份:
    2003
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Messy Data Modeling and Related Topics
凌乱数据建模及相关主题
  • 批准号:
    9803273
  • 财政年份:
    1998
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant

相似海外基金

Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Research Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Discovery Projects
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
  • 批准号:
    2243041
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
  • 批准号:
    2239870
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了