FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
基本信息
- 批准号:0244550
- 负责人:
- 金额:$ 61.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0244550 and DMS-0244100Principal Investigator: Ralph L. Cohen, Jun Li, and Dennis P. SullivanThis project investigates the topology ofmoduli spaces of Riemann surfaces, their applications to stringtopology, and certain mathematical questions arising from stringtheory in physics. It is a collaborative project involvingalgebraic topology, algebraic geometry, and Riemann surfacetheory. It will pursue significant new research opportunitiesarising from three recent important developments: TheMadsen-Weiss proof of the famous conjecture of Mumford on thestable cohomology of moduli spaces, the discovery by Chas andSullivan of the new structures on the topology of loop spaces ofmanifolds, and recent advances in open string theory in physics.One of the goals of this project is to understand theimplications of Madsen and Weiss' theorem on the Chas-Sullivan"String topology" theory. Another aspect of this project is tostudy the relationship between string topology and Gromov-Wittentheory in algebraic geometry. A longer term goal of this projectis to investigate how this theory can help to give a mathematicalframework for analyzing certain specific questions motivated byopen string theory in physics.Geometric questions have long been motivated by the attempt tounderstand physical theories. Einstein's general theory ofrelativity, and the attempt to place it in firm mathematicalfoundations, motivated much of the development of differentialgeometry throughout the 20th century. During the last 20 yearsof the century generalizations of the famous Maxwell's equationsfor electricity and magnetism led to new techniques for studyinggeometry and topology in dimensions three and four. Stringtheory is a relatively new quantum theory of gravity. Placing itin firm mathematical foundations is quite challenging, and hasmotivated quite a bit of new research in geometry. For examplethe techniques of string theory predicted the answers to someclassical questions in enumerative geometry, many of which werelater verified using a new theory in algebraic geometry due tothe mathematician M. Gromov, and the physicist, E. Witten.String theory involves understanding how vibrating strings evolvethrough time. As a string evolves, it maps out a two dimensional"world sheet". So the mathematics behind string theory muststudy spaces of "strings", or curves and loops, as well as spacesof two dimensional surfaces in an ambient space. This projecthas been motivated by recent advances in understanding thetopological structure of spaces of strings, ("string topology"),as well as a separate breakthrough in understanding the space oftwo dimensional surfaces. The goal of this project is tounderstand the implications of this breakthrough on "stringtopology", understand how this topological theory is related tothe geometric theory of Gromov and Witten, and to apply thesetheories to certain specific questions arising from string theoryin physics. This award supports a Focused Research Group basedat Stanford University and SUNY at Stony Brook.
摘要奖项:DMS-0244550 和 DMS-0244100 首席研究员:Ralph L. Cohen、Jun Li 和 Dennis P. Sullivan 该项目研究黎曼曲面模空间的拓扑、它们在弦拓扑中的应用,以及物理学中弦理论引起的某些数学问题。这是一个涉及代数拓扑、代数几何和黎曼曲面理论的合作项目。它将寻求来自最近三个重要发展的重大新研究机会:Mumford关于模空间稳定上同调的著名猜想的Madsen-Weiss证明,Chas和Sullivan对流形环空间拓扑的新结构的发现,以及物理学中开弦理论的最新进展。该项目的目标之一是理解Madsen和Weiss的含义 Chas-Sullivan“弦拓扑”理论的定理。 该项目的另一个方面是研究代数几何中弦拓扑与格罗莫夫-维滕理论之间的关系。 该项目的长期目标是研究该理论如何帮助提供一个数学框架来分析由物理学中的开弦理论引发的某些特定问题。长期以来,几何问题一直是出于理解物理理论的尝试而引发的。 爱因斯坦的广义相对论以及将其置于坚实的数学基础上的尝试极大地推动了整个 20 世纪微分几何的发展。 在本世纪的最后 20 年中,著名的麦克斯韦电学和磁学方程的推广带来了研究三维和四维几何和拓扑的新技术。 弦理论是一种相对较新的量子引力理论。 将其置于坚实的数学基础是相当具有挑战性的,并且激发了几何学方面的大量新研究。 例如,弦理论技术预测了枚举几何中一些经典问题的答案,其中许多问题后来通过数学家 M. Gromov 和物理学家 E. Witten 提出的代数几何新理论得到验证。弦理论涉及理解振动弦如何随时间演化。 随着弦的演化,它会绘制出二维的“世界表”。 因此,弦理论背后的数学必须研究“弦”的空间,或者曲线和环,以及环境空间中的二维表面的空间。 该项目的动机是理解弦空间的拓扑结构(“弦拓扑”)的最新进展,以及理解二维表面空间的单独突破。 该项目的目标是了解这一突破对“弦拓扑”的影响,了解这种拓扑理论与格罗莫夫和维滕的几何理论的关系,并将这些理论应用于物理学中弦理论引起的某些具体问题。 该奖项支持斯坦福大学和纽约州立大学石溪分校的重点研究小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Cohen其他文献
Factors affecting 13C-natural abundance measurement of breath carbon dioxide during surgery: absorption of carbon dioxide during endoscopic procedures.
影响手术期间呼吸二氧化碳 13C 自然丰度测量的因素:内窥镜手术期间二氧化碳的吸收。
- DOI:
10.1002/rcm.3572 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
S. Eaton;M. Pacilli;James Wood;M. McHoney;L. Corizia;C. Kingsley;J. Curry;J. Herod;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Vanishing lines in generalized Adams spectral sequences are generic
广义 Adams 谱序列中的消失线是通用的
- DOI:
10.2140/gt.1999.3.155 - 发表时间:
1999 - 期刊:
- 影响因子:2
- 作者:
Geometry Topology;G. G G G G G G G G G G G G G G;M. Hopkins;J. Palmieri;J. Smith;Ralph Cohen;Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
Innovation and variation: Literary change and georgic poetry
- DOI:
10.1007/bf02029080 - 发表时间:
1975-03-01 - 期刊:
- 影响因子:0.200
- 作者:
Ralph Cohen - 通讯作者:
Ralph Cohen
Role of simulation for paediatric proceduralists: Practice makes perfect or trial and error?
模拟对儿科程序学家的作用:熟能生巧还是反复试验?
- DOI:
10.1111/jpc.12039 - 发表时间:
2013 - 期刊:
- 影响因子:1.7
- 作者:
S. S. Bidarkar;James Wood;Ralph Cohen;A. Holland - 通讯作者:
A. Holland
Transitional cell papilloma of the bladder in a child: A case report and review of literature
- DOI:
10.1016/j.jpurol.2005.05.009 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:
- 作者:
Gordon Thomas;Parshotam Gera;Susan Arbuckle;Ralph Cohen - 通讯作者:
Ralph Cohen
Ralph Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Cohen', 18)}}的其他基金
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
1104555 - 财政年份:2011
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
0905809 - 财政年份:2009
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
- 批准号:
0649446 - 财政年份:2007
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
SM: Geometry and Topology of Moduli Spaces and Applications
SM:模空间的几何和拓扑及其应用
- 批准号:
0603355 - 财政年份:2006
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
String Topology and the Algebraic Topology of Moduli Spaces
弦拓扑和模空间的代数拓扑
- 批准号:
0603713 - 财政年份:2006
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
Workshop on the Mumford Standard Class Conjecture at Stanford University, July and August, 2001.
芒福德标准类猜想研讨会,斯坦福大学,2001 年 7 月和 8 月。
- 批准号:
0115014 - 财政年份:2001
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
Presidential Young Investigator: Mathematical Sciences: Algebraic and Differential Topology
总统青年研究员:数学科学:代数和微分拓扑
- 批准号:
8352122 - 财政年份:1984
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 61.13万 - 项目类别:
Continuing Grant














{{item.name}}会员




