SM: Geometry and Topology of Moduli Spaces and Applications
SM:模空间的几何和拓扑及其应用
基本信息
- 批准号:0603355
- 负责人:
- 金额:$ 44.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the geometry and topology of the moduli space of Riemann surfaces and the corresponding mapping class groups has been a goal of central importance in mathematics for many years. In the last 15 years there have been several new perspectives on moduli spaces that have not only increased our understanding of these important objects, but have fundamentally affected major research directions of several areas of topology and geometry, including Hyperbolic Geometry and Geometric Group Theory, Algebraic and Symplectic Geometry, and most recently, Algebraic Topology. In the last five years there have been several startling advances in several of these areas. Taken as a whole, these areas have, in the last few years, represented some of the most exciting directions of study in topology and geometry, and they promise to continue to do so in the forseeable future. This proposal is for the funding of a major, three year emphasis program in the topology and geometry of moduli spaces and related topics. Each year a different mathematical perspective of this topic will be emphasized, but all three years will involve participants from a broad range of subfields. The three areas of emphasis will be Hyperbolic Geometry and Geometric Group Theory, The Algebraic Topology of Moduli Spaces and String Topology, and The Algebraic Geometry of Moduli Spaces and Symplectic Geometry.The study of surfaces has been a major driving force in mathematics since the time of Riemann in the mid 19th century. The space of geometric structures on a given two dimensional surface is known as the moduli space of Riemann surfaces. These moduli spaces have been classically studied in algebraic geometry. With the pioneering work of M. Gromov in the 1970's, these moduli spaces became instrumental in the study of symplectic geometry as well. They are also central in the modern view of low dimensional topology and hyperbolic geometry initiated by Thurston around the same time. With the development of conformal field theory and string theory in the 1980's, these moduli spaces also began to play an important role in theoretical physics. Most recently, techniques of algebraic topology have been brought to bear on the study of these moduli spaces over the last few years with exciting results. Conversely, formalisms from physics and geometry have had a major impact on recent research directions in algebraic topology. The last five years have seen exciting developments in all these geometric and topological areas affecting and affected by moduli spaces of Riemann surfaces. As one can imagine, the excitement produced in these areas of study have attracted many graduate students and young mathematicians. To be effective researchers, it is important that these young mathematicians gain an understanding of the various different perspectives on these moduli spaces and related objects. Cross pollination between these areas both in terms of techniques and directions of research, can have a powerful effect on the development of these central topics in topology and geometry. This proposal is for the funding of a major, three year emphasis program in the topology and geometry of moduli spaces and related topics. The program will be organized by the Mathematics Research Center of Stanford University, one of the leading centers of research in geometry and topology, and by the American Institute of Mathematics, which is a major independent research institute. Each year a different mathematical perspective of this topic will be emphasized, but all three years will involve participants from a broad range of subfields. Some of the world's leading senior mathematicians, their junior colleagues, as well as students will participate in these programs, share and compare their different perspectives and areas of expertise, and will work together to deepen our understanding of this central area of mathematics, and produce new and exciting methods, techniques, and results.
理解黎曼曲面的模空间的几何和拓扑以及相应的映射类群多年来一直是数学中的一个重要目标。在过去的15年里,模空间出现了一些新的观点,不仅增加了我们对这些重要对象的理解,而且从根本上影响了拓扑和几何几个领域的主要研究方向,包括双曲几何和几何群论,代数学和辛几何,以及最近的代数拓扑。在过去的五年里,在其中几个领域取得了一些惊人的进展。作为一个整体,这些领域,在过去的几年里,代表了一些最令人兴奋的方向的研究拓扑和几何,他们承诺继续这样做,在可预见的未来。这个建议是一个重大的,为期三年的重点计划,在拓扑和几何模空间和相关主题的资金。每年都将强调这一主题的不同数学观点,但所有三年都将涉及来自广泛子领域的参与者。三个领域的重点将是双曲几何和几何群论,代数拓扑的模空间和弦拓扑,代数几何的模空间和辛几何。曲面的研究一直是一个主要的推动力,在数学的时间以来,黎曼在世纪中期。在给定的二维曲面上的几何结构的空间被称为黎曼曲面的模空间。这些模空间已经在代数几何中进行了经典的研究。随着M. Gromov在20世纪70年代,这些模空间也成为辛几何研究的工具。他们也是中心的现代观点低维拓扑和双曲几何发起瑟斯顿大约在同一时间。随着20世纪80年代共形场论和弦论的发展,这些模空间也开始在理论物理中发挥重要作用。最近,技术的代数拓扑结构已被带到承担研究这些模空间在过去几年中令人兴奋的结果。相反,物理学和几何学的形式主义对代数拓扑学最近的研究方向产生了重大影响。在过去的五年中已经看到了令人兴奋的发展,在所有这些几何和拓扑领域的影响和影响模空间的黎曼曲面。正如人们可以想象的那样,在这些研究领域产生的兴奋吸引了许多研究生和年轻的数学家。为了成为有效的研究人员,重要的是这些年轻的数学家获得对这些模空间和相关对象的各种不同观点的理解。这些领域在技术和研究方向方面的交叉授粉,可以对拓扑学和几何学中这些中心主题的发展产生强大的影响。这个建议是为一个主要的,为期三年的重点计划在拓扑和几何模空间和相关主题的资金。该计划将由斯坦福大学数学研究中心组织,该中心是几何和拓扑学研究的主要中心之一,并由美国数学研究所组织,该研究所是一个主要的独立研究机构。每年都将强调这一主题的不同数学观点,但所有三年都将涉及来自广泛子领域的参与者。一些世界领先的高级数学家,他们的初级同事,以及学生将参加这些计划,分享和比较他们的不同观点和专业领域,并将共同努力,加深我们对这个数学中心领域的理解,并产生新的和令人兴奋的方法,技术和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Cohen其他文献
Factors affecting 13C-natural abundance measurement of breath carbon dioxide during surgery: absorption of carbon dioxide during endoscopic procedures.
影响手术期间呼吸二氧化碳 13C 自然丰度测量的因素:内窥镜手术期间二氧化碳的吸收。
- DOI:
10.1002/rcm.3572 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
S. Eaton;M. Pacilli;James Wood;M. McHoney;L. Corizia;C. Kingsley;J. Curry;J. Herod;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Vanishing lines in generalized Adams spectral sequences are generic
广义 Adams 谱序列中的消失线是通用的
- DOI:
10.2140/gt.1999.3.155 - 发表时间:
1999 - 期刊:
- 影响因子:2
- 作者:
Geometry Topology;G. G G G G G G G G G G G G G G;M. Hopkins;J. Palmieri;J. Smith;Ralph Cohen;Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
Innovation and variation: Literary change and georgic poetry
- DOI:
10.1007/bf02029080 - 发表时间:
1975-03-01 - 期刊:
- 影响因子:0.200
- 作者:
Ralph Cohen - 通讯作者:
Ralph Cohen
Role of simulation for paediatric proceduralists: Practice makes perfect or trial and error?
模拟对儿科程序学家的作用:熟能生巧还是反复试验?
- DOI:
10.1111/jpc.12039 - 发表时间:
2013 - 期刊:
- 影响因子:1.7
- 作者:
S. S. Bidarkar;James Wood;Ralph Cohen;A. Holland - 通讯作者:
A. Holland
Transitional cell papilloma of the bladder in a child: A case report and review of literature
- DOI:
10.1016/j.jpurol.2005.05.009 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:
- 作者:
Gordon Thomas;Parshotam Gera;Susan Arbuckle;Ralph Cohen - 通讯作者:
Ralph Cohen
Ralph Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Cohen', 18)}}的其他基金
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
1104555 - 财政年份:2011
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
0905809 - 财政年份:2009
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
- 批准号:
0649446 - 财政年份:2007
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
String Topology and the Algebraic Topology of Moduli Spaces
弦拓扑和模空间的代数拓扑
- 批准号:
0603713 - 财政年份:2006
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
- 批准号:
0244550 - 财政年份:2003
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Workshop on the Mumford Standard Class Conjecture at Stanford University, July and August, 2001.
芒福德标准类猜想研讨会,斯坦福大学,2001 年 7 月和 8 月。
- 批准号:
0115014 - 财政年份:2001
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Presidential Young Investigator: Mathematical Sciences: Algebraic and Differential Topology
总统青年研究员:数学科学:代数和微分拓扑
- 批准号:
8352122 - 财政年份:1984
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
- 批准号:
EP/Z531224/1 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Research Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
- 批准号:
2304920 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant