String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
基本信息
- 批准号:0905809
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This proposal consists of several projects using algebraic topological techniques to study questions arising from geometric topology and geometry. Among the most exciting and active areas of this type of study are ``String Topology", the study of the homotopy type of moduli spaces, and the study of topological field theories. The projects in this proposal, some long term, involve investigations into these new and very interesting areas of topology. In this proposal, there are projects that will apply string topology to geometry, including the development of ``Quantum String topology" of a symplectic manifold with M. Schwarz, the study of the cobordism type of moduli spaces of holomorphic curves with I. Madsen, and the relation of the string topology of a manifold to the ``Fukaya-Seidel" category of the cotangent bundle with its canonical symplectic structure,with C. Teleman and A. Blumberg. There are also projects that will to continue to study and develop the homotopy theoretic structure of this theory, including the construction and study of ``higher order" string topology operations with J.D.S. Jones, and the construction and study of the ``string topology $A infinity category" of a manifold, and its Hochschild homology, with A. Blumberg and C. Teleman. Other projects include the study of characteristic classes of conformal field theories, with Madsen, and a project with N. Kitchloo, to address questions asked by the geometers F. Lalonde and D. McDuff on the Serre spectral sequence for bundles with symplectic fibers.This proposal consists of several projects investigating the new area of research known as "String Topology", as well as related questions. String topology, a theory that was first introduced by Chas and Sullivan in 1999, studies structures on spaces of paths, loops, and surfaces. This structure was motivated by formalisms in string theory in physics. The idea is to understand how loops (or paths) in a background space can evolve in time. Loops can evolve by changing in size and even breaking apart. In this proposal this theory is studied in a variety of contexts, including the mathematical formalisms of Quantum Field Theory. Moreover the several projects understanding the relationship between string topology and more geometric theories are pursued.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。这个建议包括几个项目,使用代数拓扑技术来研究几何拓扑和几何所产生的问题。这种类型的研究中最令人兴奋和活跃的领域是“字符串拓扑”, 研究模空间的同伦类型,研究拓扑场论。本提案中的项目,有些是长期的,涉及对这些新的和非常有趣的拓扑学领域的调查。 在这个提议中,有一些项目将把弦拓扑应用到几何中,包括 一个辛流形的“量子弦拓扑”的发展与M。施瓦茨,用I. Madsen,以及流形的弦拓扑与余切丛的具有标准辛结构的“Chalaya-Seidel”范畴之间的关系,C. Teleman和A.布伦伯格 还有一些项目将 继续研究和发展这个理论的同伦理论结构,包括与J.D.S. Jones,以及流形的“弦拓扑”A无穷范畴及其Hochschild同调的构造和研究,其中A. Blumberg和C. Teleman. 其他项目包括与马德森合作的共形场论特征类的研究,以及与N。Kitchloo,以解决几何学家F。Lalonde和D. McDuff关于具有辛纤维的丛的Serre谱序列的研究。这个建议包括几个项目,研究被称为“弦拓扑”的新研究领域,以及相关的问题。弦拓扑学是Chas和Sullivan在1999年首次提出的一个理论,研究路径、环和曲面空间上的结构。这种结构是由物理学中的弦理论的形式主义所激发的。这个想法是为了了解背景空间中的循环(或路径)如何随着时间的推移而演变。循环可以通过改变大小甚至分裂来进化。 在这个提议中,这个理论在各种背景下进行了研究,包括量子场论的数学形式。此外,我们还研究了弦拓扑与更多几何理论之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Cohen其他文献
Factors affecting 13C-natural abundance measurement of breath carbon dioxide during surgery: absorption of carbon dioxide during endoscopic procedures.
影响手术期间呼吸二氧化碳 13C 自然丰度测量的因素:内窥镜手术期间二氧化碳的吸收。
- DOI:
10.1002/rcm.3572 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
S. Eaton;M. Pacilli;James Wood;M. McHoney;L. Corizia;C. Kingsley;J. Curry;J. Herod;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Vanishing lines in generalized Adams spectral sequences are generic
广义 Adams 谱序列中的消失线是通用的
- DOI:
10.2140/gt.1999.3.155 - 发表时间:
1999 - 期刊:
- 影响因子:2
- 作者:
Geometry Topology;G. G G G G G G G G G G G G G G;M. Hopkins;J. Palmieri;J. Smith;Ralph Cohen;Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
Innovation and variation: Literary change and georgic poetry
- DOI:
10.1007/bf02029080 - 发表时间:
1975-03-01 - 期刊:
- 影响因子:0.200
- 作者:
Ralph Cohen - 通讯作者:
Ralph Cohen
Role of simulation for paediatric proceduralists: Practice makes perfect or trial and error?
模拟对儿科程序学家的作用:熟能生巧还是反复试验?
- DOI:
10.1111/jpc.12039 - 发表时间:
2013 - 期刊:
- 影响因子:1.7
- 作者:
S. S. Bidarkar;James Wood;Ralph Cohen;A. Holland - 通讯作者:
A. Holland
Transitional cell papilloma of the bladder in a child: A case report and review of literature
- DOI:
10.1016/j.jpurol.2005.05.009 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:
- 作者:
Gordon Thomas;Parshotam Gera;Susan Arbuckle;Ralph Cohen - 通讯作者:
Ralph Cohen
Ralph Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Cohen', 18)}}的其他基金
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
1104555 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
- 批准号:
0649446 - 财政年份:2007
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
SM: Geometry and Topology of Moduli Spaces and Applications
SM:模空间的几何和拓扑及其应用
- 批准号:
0603355 - 财政年份:2006
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
String Topology and the Algebraic Topology of Moduli Spaces
弦拓扑和模空间的代数拓扑
- 批准号:
0603713 - 财政年份:2006
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
- 批准号:
0244550 - 财政年份:2003
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Workshop on the Mumford Standard Class Conjecture at Stanford University, July and August, 2001.
芒福德标准类猜想研讨会,斯坦福大学,2001 年 7 月和 8 月。
- 批准号:
0115014 - 财政年份:2001
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Presidential Young Investigator: Mathematical Sciences: Algebraic and Differential Topology
总统青年研究员:数学科学:代数和微分拓扑
- 批准号:
8352122 - 财政年份:1984
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似海外基金
Conference: CMND 2024 program: Field Theory and Topology
会议:CMND 2024 议程:场论与拓扑
- 批准号:
2350370 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Studentship
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Global Development of Toroidal Plasma Peripheral Radiative Cooling Method Using Magnetic Field Topology and Generalization of its Stabilization Mechanism
利用磁场拓扑的环形等离子体外围辐射冷却方法的全球发展及其稳定机制的推广
- 批准号:
22KK0039 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
- 批准号:
21H00982 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Terahertz, Topology, Technology: Realising the potential of nanoscale Dirac materials using near-field terahertz spectroscopy
太赫兹、拓扑、技术:利用近场太赫兹光谱实现纳米级狄拉克材料的潜力
- 批准号:
MR/T022140/1 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Fellowship
Between Topology and Quantum Field Theory
拓扑学与量子场论之间
- 批准号:
1849951 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Topology in Quantum Mechanics and Quantum Field Theory.
量子力学和量子场论中的拓扑。
- 批准号:
2123932 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Studentship
Symmetry and Topology in Field Theory and Condensed Matter Theory
场论和凝聚态理论中的对称性和拓扑
- 批准号:
16H03984 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CRII: III: Topology-Driven, Multi-Scale Tensor Field Visualization
CRII:III:拓扑驱动的多尺度张量场可视化
- 批准号:
1566236 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Standard Grant














{{item.name}}会员




