From Localization to Extended States in Anderson-type Models

安德森型模型中从局部化到扩展状态

基本信息

  • 批准号:
    0245210
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-05-15 至 2007-04-30
  • 项目状态:
    已结题

项目摘要

The PI will investigate several aspects of thelocalization-delocalization transition in Anderson-type randomSchr\"odinger operators. One goal is the development of newmethods to characterize energy regimes with localized wavefunctions. The main focus will be on the fractional moment(or Aizenman-Molchanov) method, which has recently been shown toapply to continuum disordered systems. The PI and hiscollaborators will further increase the applicability of thismethod and use it to study several open problems such as thelocalization properties of continuum surface models and theAnderson model on continuum strips. Another objective is to studymathematical mechanisms which show existence ofextended states in disordered media. For example, this will bestudied through one-dimensional random polymers, where an extendedstate at a single energy can lead to significant electrontransport. The PI and collaborators will also develop perturbationtheoretic methods to study the high energy spectrum ofmulti-dimensional Schr\"odinger operators with quasi-periodicpotentials, and, in particular, establish the existence ofextended states for this model.The Anderson model is used to describe the conductivity propertiesof disordered media. This includes crystals with imbedded orsubstitutional impurities, alloys, amorphous media, the effects oflattice fluctuations at high temperature, and quasi crystals. Thecentral goal is to understand the effects of disorder on electrontransport and therefore to distinguish between conductors andinsulators. The phenomena which are observed are not restricted toquantum mechanical waves, but extend to the propagation ofacoustic, electro-magnetic and elastic waves in disordered media.Applications in engineering include the study of randomimperfections in quantum wave guides, photonic crystals, andanomalous transport in quasi crystals. The PI's research is aimedat finding mathematically rigorous justifications of the Andersontransition, stipulating that disordered media can undergo a phasetransition from insulator to conductor at sufficiently highenergy.
PI将研究Anderson型随机Schr odinger算子的定域-离域转变的几个方面。其中一个目标是发展新的方法来表征局域波函数的能量状态。主要的焦点将放在分数矩(或Aizenman-Molchanov)方法上,该方法最近被证明适用于连续无序系统。PI和他的合作者将进一步增加这种方法的适用性,并使用它来研究几个开放的问题,如连续表面模型的局部化性质和连续带上的Anderson模型。另一个目标是研究无序介质中扩展态存在的数学机制。例如,这将通过一维无规聚合物来研究,在一维无规聚合物中,单一能量下的扩展态可以导致显著的电子传输。PI和合作者还将发展微扰理论方法来研究具有准双势的多维Schr\“odinger算子的高能谱,特别是建立该模型的扩展态的存在性。安德森模型用于描述无序介质的导电特性。这包括有嵌入或替代杂质的晶体、合金、非晶介质、高温下的晶格涨落效应和准晶体。中心目标是了解无序对电子输运的影响,从而区分导体和绝缘体。所观察到的现象不仅限于量子力学波,而且还扩展到声波、电磁波和弹性波在无序介质中的传播,在工程上的应用包括量子波导、光子晶体和准晶体中的反常输运的研究。PI的研究旨在找到安德森转变的数学上严格的理由,规定无序介质可以在足够高的能量下经历从绝缘体到导体的相变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunter Stolz其他文献

Droplet localization in the random XXZ model and its manifestations
随机XXZ模型中的液滴局域化及其表现
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Elgart;Abel Klein;Gunter Stolz
  • 通讯作者:
    Gunter Stolz
Localization near fluctuation boundaries via fractional moments and applications
通过分数矩和应用程序在波动边界附近进行定位
  • DOI:
    10.1007/bf02916756
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. B. D. Monvel;S. Naboko;P. Stollmann;Gunter Stolz
  • 通讯作者:
    Gunter Stolz

Gunter Stolz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunter Stolz', 18)}}的其他基金

Localization Properties of Interacting Disordered Quantum Systems
相互作用的无序量子系统的局域化特性
  • 批准号:
    1069320
  • 财政年份:
    2011
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Random Schrodinger operators
随机薛定谔算子
  • 批准号:
    0653374
  • 财政年份:
    2007
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Scattering theoretic methods in the mathematics of disordered media
无序介质数学中的散射理论方法
  • 批准号:
    0070343
  • 财政年份:
    2000
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Localization in Mathematical Models of Disordered Media
数学科学:无序媒体数学模型的定位
  • 批准号:
    9706076
  • 财政年份:
    1997
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Eigenvalues of Elliptic Operators in Gaps of the Essential Spectrum
数学科学:本征谱间隙中椭圆算子的特征值
  • 批准号:
    9401417
  • 财政年份:
    1994
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Extended Synaptotagmins在内质网与细胞质膜互作中的机制研究
  • 批准号:
    91854117
  • 批准年份:
    2018
  • 资助金额:
    92.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Novel 'extended labour induction' balloon to improve safety of labour induction: Prototype development and preliminary clinical study
新型“延长引产”球囊可提高引产安全性:原型开发和初步临床研究
  • 批准号:
    MR/Y503423/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
I-Corps: Translation Potential of Bidirectional Neural Communication for Extended Reality Technologies
I-Corps:双向神经通信在扩展现实技术中的转化潜力
  • 批准号:
    2419142
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
  • 批准号:
    2350079
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
  • 批准号:
    10097862
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Collaborative R&D
Inverted confocal-laser-scanning-microscope with an extended excitation-emission spectrum
具有扩展激发发射光谱的倒置共焦激光扫描显微镜
  • 批准号:
    525029482
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Major Research Instrumentation
The Pacific Northwest Open Extended Reality Initiative
太平洋西北开放扩展现实计划
  • 批准号:
    2329587
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Extended Reality Factory Innovation for Adaptive Problem-solving and Personalized Learning in Manufacturing Engineering
协作研究:制造工程中自适应问题解决和个性化学习的扩展现实工厂创新
  • 批准号:
    2302833
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
RUI: New Porphyrinoid Architectures with Extended Conjugation Pathways
RUI:具有扩展共轭途径的新型卟啉结构
  • 批准号:
    2247214
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
What is Real? Exploration of City and Bodyscape through the Theory of Extended Mind
什么是真实?
  • 批准号:
    22KF0072
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
GMP Manufacturing and IND Enabling Studies of Extended-Release PNA5: A Novel Therapeutic for Treating Cognitive Impairment in Patients at-risk for Alzheimer's Disease-Related Dementias and Vascular
缓释 PNA5 的 GMP 生产和 IND 启用研究:一种治疗阿尔茨海默氏病相关痴呆和血管性认知障碍患者认知障碍的新疗法
  • 批准号:
    10819329
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了