RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
基本信息
- 批准号:2350079
- 负责人:
- 金额:$ 24.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The PI will investigate the properties of chaotic dynamical systems that are out of equilibrium due to the influence of either external forces or interconnected components. Research in dynamical systems is often focused on closed systems in which the dynamics are self-contained. In many modeling situations, however, such a global view is not possible, and it becomes necessary to study local systems influenced by external dynamics, possibly on different spatial or temporal scales. To better understand these phenomena, the PI will study open systems in which mass or energy may enter or exit through deterministic or random mechanisms, as well as large-scale systems of smaller interacting components that exchange mass or energy. These problems are strongly motivated by connections with statistical mechanics and seek to advance our understanding of fundamental questions related to energy transport and diffusion. This award will also support the involvement of undergraduates in mathematics research. The highly visual nature and physical motivation of the problems will enable the investigator to recruit undergraduate students to participate in related research projects. Special emphasis will be given to recruiting students from underrepresented groups in research mathematics. Students will disseminate results of their research via poster sessions, conference presentations and publications in peer-reviewed journals. By stimulating interest in research careers in mathematics and creating a peer community supportive of that interest, this award will contribute to the important goal of integrating research and education.The funded research includes three specific projects. The first project investigates the statistical and thermodynamic properties of both classical and non-equilibrium particle systems with collision interactions, an important class of models from statistical mechanics. The second concerns open systems, which relate on the one hand to physical systems in which mass or energy is allowed to escape, and on the other to the study of metastable states. The third project generalizes open systems to include linked and extended dynamical systems comprised of two or more components that exchange mass or energy through deterministic or random mechanisms. Important examples include the aperiodic Lorentz gas and mechanical models of heat conduction. The investigator will bring to bear several analytical techniques that he has been instrumental in developing for these classes of systems, including his recent work concerning the spectral decomposition of transfer operators for dispersing particle systems, contractions in projective cones due to Birkhoff, and the construction of Markov extensions adapted to open systems. None of these techniques require Markovian assumptions on the dynamics, making them widely applicable to a wide variety of nonuniformly hyperbolic and physically important systems. The application of these techniques to central models from equilibrium and non-equilibrium statistical mechanics will represent significant advances in the study of such systems. Efforts to understand these tools in one context strengthens them and aids in their application to other areas of mathematics. Their intellectual interest is enhanced by the application of these ideas to resolve problems posed and approached formally in the physics literature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将研究由于外力或相互连接的组件的影响而失去平衡的混沌动力系统的性质。动力系统的研究通常集中在动力学是自包含的封闭系统上。然而,在许多建模情况下,这样的全局视图是不可能的,因此有必要研究受外部动态影响的局部系统,可能是在不同的空间或时间尺度上。为了更好地理解这些现象,PI将研究质量或能量可以通过确定性或随机机制进入或退出的开放系统,以及由较小的相互作用组件交换质量或能量的大型系统。这些问题与统计力学有着强烈的联系,并试图促进我们对与能量传输和扩散相关的基本问题的理解。该奖项还将支持本科生参与数学研究。问题的高度视觉性和物理动机将使研究者能够招募本科生参与相关的研究项目。特别强调的是,将招收来自代表性不足的研究数学群体的学生。学生将通过海报会议、会议演讲和在同行评审的期刊上发表文章来传播他们的研究成果。通过激发人们对数学研究事业的兴趣,并创建一个支持这种兴趣的同行社区,该奖项将有助于实现整合研究和教育的重要目标。获资助的研究包括三个具体项目。第一个项目研究具有碰撞相互作用的经典和非平衡粒子系统的统计和热力学性质,这是统计力学中的一类重要模型。第二种是开放系统,它一方面涉及允许质量或能量逸出的物理系统,另一方面涉及亚稳态的研究。第三个项目将开放系统概括为包括由两个或多个组件组成的连接和扩展的动力系统,这些组件通过确定性或随机机制交换质量或能量。重要的例子包括非周期洛伦兹气体和热传导的力学模型。研究者将带来他为这类系统开发的几种分析技术,包括他最近关于分散粒子系统转移算子的谱分解,由于Birkhoff引起的投影锥的收缩,以及适用于开放系统的马尔可夫扩展的构造。这些技术都不需要动力学上的马尔可夫假设,这使得它们广泛适用于各种非均匀双曲和物理上重要的系统。将这些技术应用于平衡和非平衡统计力学的中心模型将代表这类系统研究的重大进展。在一个环境中理解这些工具的努力加强了它们,并有助于将它们应用于数学的其他领域。通过应用这些思想来解决物理文献中提出和正式处理的问题,提高了他们的智力兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Demers其他文献
A trichotomy for hitting times and escape rates for a class of unimodal maps
一类单峰地图的命中时间和逃逸率的三分法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mark Demers;Mike Todd - 通讯作者:
Mike Todd
An audiometric study of the effects of paraspinal stimulation on hearing acuity in human subjects understanding the Harvey Lillard phenomenon
- DOI:
10.1186/s12998-014-0039-2 - 发表时间:
2014-11-19 - 期刊:
- 影响因子:2.300
- 作者:
Mark Demers;Zehra Gajic;Everett Gerretsen;Brian Budgell - 通讯作者:
Brian Budgell
Mark Demers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Demers', 18)}}的其他基金
RUI: Equilibrium and Nonequilibrium Dynamics for Systems of Physical Origin
RUI:物理起源系统的平衡和非平衡动力学
- 批准号:
2055070 - 财政年份:2021
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
RUI: Nonuniformly Hyperbolic Dynamical Systems out of Equilibrium
RUI:不平衡的非均匀双曲动力系统
- 批准号:
1800321 - 财政年份:2018
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
RUI: Statistical Properties of Nonequilibrium and Extended Dynamical Systems
RUI:非平衡和扩展动力系统的统计特性
- 批准号:
1362420 - 财政年份:2014
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
RUI: Open, coupled and extended dynamical systems with nonuniform hyperbolicity
RUI:具有非均匀双曲性的开放、耦合和扩展动力系统
- 批准号:
1101572 - 财政年份:2011
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Open Systems, Coupled Systems and Discretization
动力系统主题:开放系统、耦合系统和离散化
- 批准号:
0801139 - 财政年份:2008
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
相似海外基金
RUI: Nonuniformly Hyperbolic Dynamical Systems out of Equilibrium
RUI:不平衡的非均匀双曲动力系统
- 批准号:
1800321 - 财政年份:2018
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Role of Nonuniformly Quantized Actuation in Biological Motion Generation
非均匀量化驱动在生物运动生成中的作用
- 批准号:
1300019 - 财政年份:2013
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Robust reconstruction techniques for nonuniformly sampled data
非均匀采样数据的鲁棒重建技术
- 批准号:
1318894 - 财政年份:2013
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Ergodic Properties of Nonuniformly Hyperbolic Systems
非均匀双曲系统的遍历性质
- 批准号:
0437404 - 财政年份:2003
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Ergodic Properties of Nonuniformly Hyperbolic Systems
非均匀双曲系统的遍历性质
- 批准号:
0240097 - 财政年份:2002
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Ergodic Properties of Nonuniformly Hyperbolic Systems
非均匀双曲系统的遍历性质
- 批准号:
0202999 - 财政年份:2002
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
Fundamental Studies of Metal Dispersion for Uniformly and Nonuniformly Distributed Catalysts
均匀和非均匀分布催化剂金属分散的基础研究
- 批准号:
8709019 - 财政年份:1987
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant
An Experimental Study of Nonuniformly Active Catalysts
非均匀活性催化剂的实验研究
- 批准号:
8005713 - 财政年份:1980
- 资助金额:
$ 24.25万 - 项目类别:
Standard Grant