Biologically Inspired Intelligent Fault Diagnosis for Power Distribution Systems
配电系统的仿生智能故障诊断
基本信息
- 批准号:0245383
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-15 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will investigate and develop a Biologically Inspired Intelligent Fault Management System using Artificial Immune System (AIS) technologies on top of a Neural Network - Fuzzy Logic (NN-FZ) structure to actively manage power distribution system faults, including diagnosis, prognosis, and data mining. The proposed approach can answer the challenges of discovering new fault diagnosis knowledge based on the dynamic operating environments, in addition to providing accurate fault diagnosis and prognosis. The NN-FZ technology will be used to aggregate information collected from sources such as SCADA system, circuit database, fault database, etc., to perform fault diagnosis and prognosis. Then an AIS algorithm will be used to guide the NN-FZ to learn, absorb, adapt, evolve and improve the fault diagnosis performance based on existing information such as the distribution system's network topology, operating conditions and weather conditions, and depending upon newly acquired information, such as new faults and operating conditions. This proposed system can data mine the existing outage database and explain heuristics about the fault diagnosis and prognosis process as preferred by operators and engineers. It can disseminate learned information to other power distribution centers, thereby preventing the reoccurrence of "learned" problems. This system would revolutionize the Fault Diagnosis process for power distribution systems, to significantly increase system reliability and reduce operation costs. The proposed activities and architectures are not only limited to power distribution system, but are also applicable to other industries such as communication networks and transportation system that are large scale nonlinear system with uncertain operating environments.
该项目将使用人工免疫系统(AIS)技术在神经网络 - 模糊逻辑(NN -FZ)结构上进行研究并开发具有生物学启发的智能故障管理系统,以积极管理功率分配系统故障,包括诊断,预后和数据挖掘。提出的方法还可以回答基于动态工作环境的新故障诊断知识的挑战,此外还可以提供准确的故障诊断和预后。 NN-FZ技术将用于汇总从SCADA系统,电路数据库,故障数据库等来源收集的信息,以执行故障诊断和预后。然后,将使用AIS算法来指导NN-FZ学习,吸收,适应,进化和改善故障诊断性能,这些诊断性能基于现有信息,例如分配系统的网络拓扑,操作条件和天气条件,并取决于新获得的信息,例如新的故障和工作条件。该提出的系统可以数据挖掘现有的停电数据库,并解释有关操作员和工程师首选的故障诊断和预后过程的启发式方法。它可以将学习的信息传播到其他配电中心,从而防止“学到”问题的再发生。该系统将彻底改变功率分配系统的故障诊断过程,从而大大提高系统可靠性并降低操作成本。拟议的活动和体系结构不仅限于发电系统,而且还适用于其他行业,例如通信网络和运输系统,它们是具有不确定操作环境的大型非线性系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mo-Yuen Chow其他文献
Distributed, Neurodynamic-Based Approach for Economic Dispatch in an Integrated Energy System
综合能源系统中基于神经动力学的分布式经济调度方法
- DOI:
10.1109/tii.2019.2905156 - 发表时间:
2020-04 - 期刊:
- 影响因子:12.3
- 作者:
Zhongkai Yi;Yinliang Xu;Jiefeng Hu;Mo-Yuen Chow;Hongbin Sun - 通讯作者:
Hongbin Sun
Distributed Event-Triggered H∞ Consensus Based Current Sharing Control of DC Microgrids Considering Uncertainties
考虑不确定性的分布式事件触发的基于共识的直流微电网均流控制
- DOI:
10.1109/tii.2019.2961151 - 发表时间:
2020 - 期刊:
- 影响因子:12.3
- 作者:
Jianguo Zhou;Yinliang Xu;Hongbin Sun;Liming Wang;Mo-Yuen Chow - 通讯作者:
Mo-Yuen Chow
Mo-Yuen Chow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mo-Yuen Chow', 18)}}的其他基金
PFI:AIR - TT: Prototyping a Smart Battery Gauge Technology for Stationary Energy Storage of Renewable Energy Resources
PFI:AIR - TT:用于可再生能源固定储能的智能电池电量计技术原型
- 批准号:
1500208 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Breakthrough: Collaborative: Secure Algorithms for Cyber-Physical Systems
突破:协作:网络物理系统的安全算法
- 批准号:
1505633 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
I-Corps: iSpace Technology for Novel Traffic Light Managements
I-Corps:用于新型交通灯管理的 iSpace 技术
- 批准号:
1338371 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: GOALI: AIS gene library based real-time resource allocation on time-sensitive large-scale multi-rate systems
合作研究:GOALI:时间敏感的大规模多速率系统上基于AIS基因库的实时资源分配
- 批准号:
0823952 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Small World Stratification for Power System Fault Diagnosis with Causality
具有因果关系的电力系统故障诊断的小世界分层
- 批准号:
0653017 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-India Planning Visit: Collaborative Research on Networked Control Systems (NCS) for Critical Multi-variable Systems, 06/01/06 - 05/31/07 Salt Lake, Kolkata (India)
美印计划访问:关键多变量系统网络控制系统 (NCS) 的合作研究,2006 年 6 月 1 日 - 2007 年 5 月 31 日盐湖城,加尔各答(印度)
- 批准号:
0632492 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Engineering Research Equipment: Fast Prototyping System for Motor Incipient Fault Detection
工程研究设备:电机早期故障检测快速原型系统
- 批准号:
9610509 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
A Neural/Fuzzy Approach for Motor Incipient Fault Detection
电机初期故障检测的神经/模糊方法
- 批准号:
9521609 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Distribution Systems Fault Causes Identification
配电系统故障原因识别
- 批准号:
9311833 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Incipient Fault Detection in Rotating Machines Using a Neural Network
使用神经网络检测旋转机器的初期故障
- 批准号:
8922727 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Smart actuators and intelligent control of biologically inspired robotic systems
智能执行器和仿生机器人系统的智能控制
- 批准号:
239191-2008 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual