Arithmetic Cycles, Eisenstein Series, Automorphic L-Functions, and Complex Multiplication
算术循环、爱森斯坦级数、自同构 L 函数和复数乘法
基本信息
- 批准号:0245406
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0245406Yang, TonghaiAbstract:Title: Arithmetic Cycles, Eisenstein Series, Automorphic L-Functions, and Complex MultiplicationThis project involves the connections between generating functionsfor height pairings of arithmetic cycles on certain Shimuravarieties, on the one hand, and second terms in the Laurentexpansions of elliptic modular and Siegel modular Eisensteinseries at certain critical points, on the other. The generatingfunctions can be viewed as arithmetic analogues of theta functionsand can be use to define arithmetic analogues of the classicaltheta correspondence, now taking certain types of modular forms toelements of arithmetic Chow groups. One application is to prove aversion of the celebrated Gross-Zagier formula without base changethe L-function. It is also hoped that one mayultimately obtain information about higher dimensional analoguesof the Gross-Zagier formula and the Birch-Swinnerton-Dyerconjecture. Another part of the project is to use arithmetic ofgenus two curves to study cryptography, which has very practicalapplication in electronic communication.In the later part of the 20th century significant advances were made in developing a `number theoretic' geometry, in which an additional dimension is added to carry information involving the interaction between the geometry and prime numbers. To a point on such a space, one can attach a number call its height, which is a measure of its `arithmetic complexity'. More generally, heights can be defined for higher dimensional objects, curves on surfaces, for example. The present project studies combinatorial relations among such heights, which reflect hidden structure carried by the spaces of `numbertheoretic' geometry. One of the most important part in electroniccommunication such as credit card processing is security, which isdone by means of cryptography. Since late 80's, it is found thatnumber theory can be applied to obtain highly secure cryptographicsystem.
DMS-0245406杨通海摘要:题目:算术循环,爱森斯坦级数, 自守L-函数和复数乘法这个项目涉及的生成函数之间的连接为高度配对的算术循环在某些Shimuravarieties,一方面,第二项在劳伦展开的椭圆模和西格尔模Eisensteinseries在某些临界点,另一方面。生成函数可以被看作是theta函数的算术类似物,并且可以用来定义经典theta对应的算术类似物,现在将某些类型的模形式用于算术Chow群的元素。一个应用是证明著名的Gross-Zagier公式的不换基L-函数的厌恶性。 人们也希望最终能获得关于Gross-Zagier公式和Birch-Swinnerton-Dyer猜想的高维类比的信息。该计划的另一部分是利用亏格两条曲线的算法来研究密码学,这在电子通信中有着非常实际的应用。在世纪后期,在发展“数论”几何方面取得了重大进展,在几何中增加了一个额外的维度来携带涉及几何与素数之间相互作用的信息。对于这样一个空间上的一个点,我们可以附加一个称为它的高度的数字,这是它的“算术复杂性”的度量。更一般地,可以为更高维度的对象(例如,曲面上的曲线)定义高度。本项目研究这些高度之间的组合关系,这反映了“数论”几何空间所携带的隐藏结构。在电子通信如信用卡处理中,最重要的部分之一是安全性,这是通过密码学来实现的。80年代后期以来,人们发现数论可以用来构造高安全性的密码体制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tonghai Yang其他文献
Twisted Borcherds products on Hilbert modular surfaces and their CM values
Hilbert 模曲面上的 Twisted Borcherds 产品及其 CM 值
- DOI:
10.1353/ajm.2007.0019 - 发表时间:
2005 - 期刊:
- 影响因子:1.7
- 作者:
J. Bruinier;Tonghai Yang - 通讯作者:
Tonghai Yang
Modular Forms and Special Cycles on Shimura Curves. (AM-161)
志村曲线上的模块化形式和特殊循环。
- DOI:
10.1515/9781400837168 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
S. Kudla;M. Rapoport;Tonghai Yang - 通讯作者:
Tonghai Yang
Borcherds Products on Unitary Group $U(2,1)$
酉群 $U(2,1)$ 上的 Borcherds 产品
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tonghai Yang;Dongxi Ye - 通讯作者:
Dongxi Ye
On a conjecture of Yui and Zagier
关于 Yui 和 Zagier 的猜想
- DOI:
10.2140/ant.2020.14.2197 - 发表时间:
2019 - 期刊:
- 影响因子:1.3
- 作者:
Yingkun Li;Tonghai Yang - 通讯作者:
Tonghai Yang
THE SECOND TERM OF AN EISENSTEIN SERIES
爱森斯坦级数的第二项
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Tonghai Yang;Tonghai Yang - 通讯作者:
Tonghai Yang
Tonghai Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tonghai Yang', 18)}}的其他基金
Arithmetic on Shimura Varieties and Applications
志村品种的计算及应用
- 批准号:
1762289 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Arithmetic on Shimura Varieties and Applications
志村品种的计算及应用
- 批准号:
1500743 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Arithmetic on Shimura Varieties and L-Series
志村品种和 L 系列的算术
- 批准号:
1200380 - 财政年份:2012
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Special Cycles on Shimura Varieties and Derivative of L-Series
志村品种和 L 系列衍生品的特殊循环
- 批准号:
0855901 - 财政年份:2009
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Arithmetic Intersection, Modular Forms, and Complex Multiplication
算术交集、模形式和复数乘法
- 批准号:
0555503 - 财政年份:2006
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Taylor Expansion of Eisenstein Series and Applications
爱森斯坦级数的泰勒展开及其应用
- 批准号:
0243601 - 财政年份:2001
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Taylor Expansion of Eisenstein Series and Applications
爱森斯坦级数的泰勒展开及其应用
- 批准号:
0070476 - 财政年份:2000
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
The Central Derivatives of Automorphic L-Functions
自守 L-函数的中心导数
- 批准号:
9996071 - 财政年份:1998
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
The Central Derivatives of Automorphic L-Functions
自守 L-函数的中心导数
- 批准号:
9700777 - 财政年份:1997
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似海外基金
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
- 批准号:
DP240102899 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Projects
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
- 批准号:
2910180 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Studentship
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
CAREER: Understanding how Earth's coupled carbon and sulfur cycles evolved after the oxygenation of the atmosphere
职业:了解地球的耦合碳和硫循环在大气氧化后如何演变
- 批准号:
2339237 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Improving Functional Regeneration and Engraftment of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells by Brief Cycles of Transient Reprogramming
通过短暂的瞬时重编程周期改善人诱导多能干细胞来源的心肌细胞的功能再生和植入
- 批准号:
24K11267 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unraveling oceanic multi-element cycles using single cell ionomics
使用单细胞离子组学揭示海洋多元素循环
- 批准号:
2875388 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Studentship