Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
基本信息
- 批准号:0245606
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-04-01 至 2008-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0245606Vogan, David A.AbstractTitle: Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher RankAbstract. The proposal concerns two problems with applications toautomorphic forms. The first problem is in representation theory:it is a conjecture in local harmonic analysis that ismotivated by taking Arthur's conjectures together with resultsof Burger, Li and Sarnak. This problem is of interest as aquestion in representation theory; it also offers a testingground for Arthur's conjectures and affords the possibilityof a better understanding of the automorphic spectrum. Thesecond problem is to study analytic number theory in the contextof automorphic forms on groups of higher rank. The dream goal ofthis is a better understanding of higher moments of L-functions,but there are a number of easier and concrete problems, such asthe development of large-sieve inequalities, whose solution wouldalso have immediate consequences for analytic number theory. The project concerns two questions in the field of``automorphic forms.'' This is a relatively new field of mathematics,guided by the Langlands program -- it seeks to establishconnections between certain (apparently) far-separatedareas of mathematics. These connections have allowed work inautomorphic forms to have a significant impact in other fields.Many cryptographic algorithms -- necessary for secure communicationover the Internet -- are based onvery subtle properties of prime numbers, and underlyingmany of these algorithms are difficult results from analytic numbertheory and automorphic forms. Another applicationof automorphic forms has been the construction of ``Ramanujan graphs''-- these are graphs with remarkable connectivity, and have hadapplication to communication networks and to theoretical computerscience. The questions under consideration will deepenour understanding of automorphic forms. In additionto the type of application just discussed,these questions lie at the intersection of different fields ofmathematics, and will encourage collaboration between expertsin these different fields.
DMS-0245606 Vogan,大卫A.摘要标题:亚瑟的猜想,谱理论和高阶解析数论摘要。这个建议涉及两个问题的应用tosautomorphic形式。 第一个问题是在表示论:这是一个猜想,在当地的调和分析,动机是采取亚瑟的turtures一起的结果伯格,李和Sarnak。这个问题作为表示论中的一个问题很有趣,它也为亚瑟的理论提供了一个试验场,并提供了更好地理解自守谱的可能性。第二个问题是在高阶群的自守形式的背景下研究解析数论。 这个梦想的目标是更好地理解L-函数的高阶矩,但也有一些更容易和具体的问题,如大筛不等式的发展,其解决方案也将对解析数论产生直接影响。该项目涉及“自守形式”领域的两个问题。这是一个相对较新的数学领域,由朗兰兹纲领指导--它试图在某些(显然)相距甚远的数学领域之间建立联系。这些联系使得非自守形式的工作在其他领域产生了重大影响。许多加密算法--通过互联网进行安全通信所必需的--都是基于素数的非常微妙的性质,而这些算法中的许多算法都是从解析数论和自守形式中得到的困难结果。自守形式的另一个应用是“拉马努金图”的构造--这些图具有显著的连通性,并已应用于通信网络和理论计算机科学。所考虑的问题将加深我们对自守形式的理解。除了刚才讨论的应用类型之外,这些问题位于不同数学领域的交叉点,并将鼓励这些不同领域的专家之间的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akshay Venkatesh其他文献
Beyond Endoscopy and special forms on GL(2)
超越内窥镜检查和 GL(2) 上的特殊表格
- DOI:
10.1515/crll.2004.2004.577.23 - 发表时间:
2004 - 期刊:
- 影响因子:0.6
- 作者:
Akshay Venkatesh - 通讯作者:
Akshay Venkatesh
SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION
自同构形式的谱论:非常简短的介绍
- DOI:
10.1007/978-1-4020-5404-4_12 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Akshay Venkatesh - 通讯作者:
Akshay Venkatesh
On Quantum Unique Ergodicity for Locally Symmetric Spaces
- DOI:
10.1007/s00039-007-0611-1 - 发表时间:
2007-06-05 - 期刊:
- 影响因子:2.500
- 作者:
Lior Silberman;Akshay Venkatesh - 通讯作者:
Akshay Venkatesh
The distribution of periodic torus orbits on homogeneous spaces
均匀空间上周期环面轨道的分布
- DOI:
10.1215/00127094-2009-023 - 发表时间:
2006 - 期刊:
- 影响因子:2.5
- 作者:
M. Einsiedler;E. Lindenstrauss;P. Michel;Akshay Venkatesh - 通讯作者:
Akshay Venkatesh
On the dimension of the space of cusp forms associated to 2-dimensional complex Galois representations
关于与二维复伽罗瓦表示相关的尖点形式的空间维度
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:1
- 作者:
P. Michel;Akshay Venkatesh - 通讯作者:
Akshay Venkatesh
Akshay Venkatesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akshay Venkatesh', 18)}}的其他基金
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
- 批准号:
2402436 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
- 批准号:
1931087 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Mathematical Sciences Institutes Diversity Initiative
合作研究:数学科学研究所多样性倡议
- 批准号:
1936539 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
- 批准号:
1401622 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Proposal: Periods of Automorphic Forms and Applications to L-Functions
FRG:协作提案:自同构形式的周期及其在 L 函数中的应用
- 批准号:
1065807 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
- 批准号:
0903110 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
- 批准号:
0813445 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
- 批准号:
0554365 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
- 批准号:
24K16908 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
- 批准号:
EP/X030989/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
- 批准号:
DP240101048 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Conference: The Mordell conjecture 100 years later
会议:100年后的莫德尔猜想
- 批准号:
2420166 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
On the m-step solvable Grothendieck conjecture in anabelian geometry
阿贝尔几何中m步可解的格洛腾迪克猜想
- 批准号:
23KJ0881 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
- 批准号:
2313466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Inhomogeneous Duffin-Schaeffer Conjecture
非齐次达芬-谢弗猜想
- 批准号:
EP/X030784/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Distance Conjecture in Quantum Gravity
量子引力中的距离猜想
- 批准号:
23K03379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)