Collaborative Research: Mathematical Sciences Institutes Diversity Initiative

合作研究:数学科学研究所多样性倡议

基本信息

  • 批准号:
    1936539
  • 负责人:
  • 金额:
    $ 5.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Cultivating diversity and broadening participation of historically underrepresented groups in the mathematical sciences are national goals that are essential components of the innovation engine that drives the nation?s economy. It is a complex problem to solve, and doing so requires a concerted effort. The Mathematical Sciences Institutes Diversity Initiative (MSIDI) is an ongoing collaboration among the NSF-funded mathematical sciences research institutes that aims to address this issue with a series of events targeting members of historically underrepresented groups in the mathematical sciences, including women of all ethnicities. There is no ?one size fits all? approach to increasing participation from underrepresented groups. In this specific project, MSIDI partners with a team of mathematicians from underrepresented groups to enhance several conferences and workshops that aim to address this underrepresentation. These special conferences and workshops are complementary to the core activities of the mathematical sciences research institutes and are important for the goal of increasing participation in key activities that are integral to a career in the mathematical sciences, as well as to core programs at the associated research institutes. Under this project, MSIDI will organize the following events. The Modern Mathematics Workshop will be a pre-conference event at SACNAS in Fall 2020 and planning will be led by the Institute for Computational and Experimental Research in Mathematics (ICERM). The Blackwell-Tapia Conference will be in Durham, NC in Fall 2020 and planning will be led by the Statistical and Applied Mathematical Sciences Institute (SAMSI). The Latinx in the Mathematical Sciences Conference will be in Los Angeles, CA in Spring 2021 and planning will be led by the Institute for Pure and Applied Mathematics (IPAM). There will be another Modern Mathematics Workshop at SACNAS in Fall 2021and planning will be led by the Mathematical Sciences Research Institute (MSRI). And Spring Opportunities will be in Princeton, NJ in Spring 2022 and planning will be led by the Institute for Advanced Study (IAS). Details about these events can be found at https://mathinstitutes.org/diversity/Modern Mathematics Workshops focus on contemporary research in mathematics and take place in conjunction with the national meeting of the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS). These workshops are for mathematicians at all levels and include some special programming for undergraduates, graduate students, and postdoctoral researchers. The Blackwell-Tapia Conference includes a mix of activities designed to inform the next generation of mathematicians about career opportunities in the mathematical sciences and provide a chance for them to network with mathematical scientists who play a leadership role in their communities. During this conference the prestigious Blackwell-Tapia Prize is awarded. This prize recognizes a mathematician who has contributed significantly to research and to addressing the problem of underrepresentation of minorities in the mathematical sciences. The Latinx in the Mathematical Sciences Conference showcases the research contributions and achievements of Latinx mathematicians and includes activities for high school students, undergraduates, graduate students, postdoctoral researchers, and faculty. The Spring Opportunities Workshop allows attendees to explore what it takes to thrive in a variety of mathematical careers. Collectively, the goals of these MSIDI activities are to recognize and showcase the research of mathematicians from underrepresented minority groups; disseminate successful efforts to address underrepresentation; inform students and early career mathematicians about career opportunities in the mathematical sciences; build a community around shared interests related to the problem of underrepresentation; and provide networking and development opportunities for current and future mathematicians at all points in the career trajectory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
培养多样性和扩大历史上代表性不足的群体在数学科学中的参与是国家目标,是推动国家创新引擎的重要组成部分?的经济。这是一个需要解决的复杂问题,需要作出协调一致的努力。 数学科学研究所多样性倡议(MSIDI)是国家科学基金会资助的数学科学研究所之间正在进行的合作,旨在通过一系列针对数学科学中历史上代表性不足的群体成员(包括所有种族的妇女)的活动来解决这一问题。有没有?一个尺寸适合所有人?增加代表性不足群体的参与。 在这个特定的项目中,MSIDI与来自代表性不足群体的数学家团队合作,以加强旨在解决代表性不足问题的几次会议和研讨会。 这些特别会议和研讨会是对数学科学研究机构核心活动的补充,对于增加参与数学科学职业所不可或缺的关键活动以及相关研究机构的核心计划的目标非常重要。 在该项目下,MSIDI将组织以下活动。 现代数学研讨会将于2020年秋季在SACNAS举行会前活动,规划将由数学计算与实验研究所(ICERM)领导。 布莱克威尔-塔皮亚会议将于2020年秋季在北卡罗来纳州达勒姆举行,规划将由统计与应用数学科学研究所(SAMSI)领导。 在数学科学会议拉丁将在洛杉矶,加利福尼亚州在2021年春季和规划将由纯粹与应用数学研究所(IPAM)领导。 2021年秋季将在SACNAS举办另一个现代数学研讨会,规划将由数学科学研究所(MSRI)领导。 春季机会将于2022年春季在新泽西州普林斯顿举行,规划将由高级研究所(IAS)领导。 有关这些活动的详细信息可以在https://mathinstitutes.org/diversity/Modern数学研讨会上找到,研讨会侧重于当代数学研究,并与墨西哥裔和美洲土著科学促进协会(SACNAS)的全国会议一起举行。 这些研讨会是为各级数学家,包括一些特殊的本科生,研究生和博士后研究人员的编程。Blackwell-Tapia会议包括一系列活动,旨在向下一代数学家介绍数学科学的职业机会,并为他们提供与在社区中发挥领导作用的数学科学家建立联系的机会。在这次会议期间,著名的布莱克威尔-塔皮亚奖被授予。 该奖项旨在表彰一位为研究和解决少数族裔在数学科学中代表性不足的问题做出重大贡献的数学家。 数学科学会议中的拉丁美洲展示了拉丁美洲数学家的研究贡献和成就,包括高中生,本科生,研究生,博士后研究人员和教师的活动。 春季机会研讨会允许与会者探索如何在各种数学职业中茁壮成长。 总的来说,这些MSIDI活动的目标是承认和展示来自代表性不足的少数群体的数学家的研究;传播解决代表性不足的成功努力;向学生和早期职业数学家介绍数学科学的职业机会;围绕与代表性不足问题有关的共同利益建立一个社区;该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akshay Venkatesh其他文献

Beyond Endoscopy and special forms on GL(2)
超越内窥镜检查和 GL(2) 上的特殊表格
  • DOI:
    10.1515/crll.2004.2004.577.23
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION
自同构形式的谱论:非常简短的介绍
  • DOI:
    10.1007/978-1-4020-5404-4_12
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
On Quantum Unique Ergodicity for Locally Symmetric Spaces
  • DOI:
    10.1007/s00039-007-0611-1
  • 发表时间:
    2007-06-05
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Lior Silberman;Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
The distribution of periodic torus orbits on homogeneous spaces
均匀空间上周期环面轨道的分布
  • DOI:
    10.1215/00127094-2009-023
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    M. Einsiedler;E. Lindenstrauss;P. Michel;Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
On the dimension of the space of cusp forms associated to 2-dimensional complex Galois representations
关于与二维复伽罗瓦表示相关的尖点形式的空间维度

Akshay Venkatesh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akshay Venkatesh', 18)}}的其他基金

Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
  • 批准号:
    2402436
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1926686
  • 财政年份:
    2020
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
  • 批准号:
    1931087
  • 财政年份:
    2019
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
  • 批准号:
    1401622
  • 财政年份:
    2014
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Proposal: Periods of Automorphic Forms and Applications to L-Functions
FRG:协作提案:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1065807
  • 财政年份:
    2011
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
  • 批准号:
    0903110
  • 财政年份:
    2008
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
  • 批准号:
    0813445
  • 财政年份:
    2007
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
  • 批准号:
    0554365
  • 财政年份:
    2006
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
  • 批准号:
    0245606
  • 财政年份:
    2003
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401258
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317572
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317569
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317571
  • 财政年份:
    2024
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
  • 批准号:
    2315437
  • 财政年份:
    2023
  • 资助金额:
    $ 5.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了