Motivic cohomology and arithmetic geometry
动机上同调和算术几何
基本信息
- 批准号:0300133
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0300133Geisser, Thomas H.AbstractTitle: Motivic cohomology and arithmetic geometryThe investigator is working on two projects.On the one hand, he tries to extend his results onWeil-etale cohomology and special values of zeta functionsfrom smooth projective varieties over finite fieldsto general varieties over finite fields, and to varietiesover local fields. The other project is the examinationof properties of the de Rham-Witt complex and topologicalcyclic homology of smooth varieties over completediscrete valuation rings. Topological trace homology TRhas a Frobenius operator, a Galois action and a filtrationanalog to Fontaine's functor. The investigator wantsto exploit this structure to construct etale and crystalline cohomology, and to apply this to arithmetic problems. In arithmetic algebraic geometry, solutions of polynomial equations are studied. Even though this field is more than two thousand years old,it turned out recently that there is a variety of applications to cryptography. One method to study a solution set of polynomialsis to associate invariants called cohomology and zeta functionsto it, and then study those invariants instead.Since the invariants are defined in very different ways, findingrelationships between them allows to translate knowledge onone into knowledge on the other. The investigator studiesthe relationship between zeta functions and a new cohomology,called Weil-etale cohomology, on the one hand, and a newinvariant called topological cyclic homology on the other hand.
一方面,他试图将他关于Weil-etale上同调和zeta函数特殊值的结果从有限域上的光滑投射簇推广到有限域上的一般簇和局部域上的簇;另一个项目是研究完全离散赋值环上光滑簇的de Rham-Witt复形和拓扑循环同调的性质。拓扑迹同调TR有一个Frobenius算子、一个Galois作用和一个类似于方丹函子的滤子.研究者希望利用这种结构来构造etale和crystalic上同调,并将其应用于算术问题。在算术代数几何中,研究多项式方程的解。尽管这个领域已经有两千多年的历史了,但最近发现密码学有各种各样的应用。研究多项式解集的一种方法是将称为上同调和zeta函数的不变量与之联系起来,然后研究这些不变量。由于不变量的定义方式非常不同,找到它们之间的关系可以将一个不变量的知识转化为另一个不变量的知识。研究了zeta函数与Weil-etale上同调和拓扑循环同调的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Geisser其他文献
Duality for varieties over global fields
全球领域品种的二元性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
T.Geisser;L.Hesselholt;Kiyokazu Nagatomo;Tomoki Nakanishi;Kenji Fukaya;W. Ebeling and A. Takahashi;Thomas Geisser;Kiyokazu Nagatomo;Masato Okado;K. Takahashi;Hiroshi Ohta;Atsuo Kuniba;K. Hikami and J. Lovejoy;K. Takahashi;Thomas Geisser - 通讯作者:
Thomas Geisser
Parshin's conjecture and motivic cohomology with compact support
帕辛猜想和紧支持的动机上同调
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser;尾角正人;Thomas Geisser - 通讯作者:
Thomas Geisser
Donagi-Morrison's examples on 2-elementary K3 surfaces
Donagi-Morrison 在 2 基本 K3 曲面上的示例
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
T.Geisser;L.Hesselholt;Kiyokazu Nagatomo;Tomoki Nakanishi;Kenji Fukaya;W. Ebeling and A. Takahashi;Thomas Geisser;Kiyokazu Nagatomo;Masato Okado;K. Takahashi;Hiroshi Ohta;Atsuo Kuniba;K. Hikami and J. Lovejoy;K. Takahashi;Thomas Geisser;Hiroshi Ohta;Shigeharu Takayama;Kenta Waranabe - 通讯作者:
Kenta Waranabe
K-theory, TC and logarithmic de Rham-Witt
K 理论、TC 和 Rham-Witt 对数
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yoshihara;H.;Thomas Geisser - 通讯作者:
Thomas Geisser
Relating Brauer groups and Tate-Shafarevich group
布劳尔群和泰特-沙法列维奇群的关系
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Geisser Thomas H.;Schmidt Alexander;Thomas Geisser;T.Geisser;T.Geisser - 通讯作者:
T.Geisser
Thomas Geisser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Geisser', 18)}}的其他基金
K-theory and motivic cohomology of singular schemes
奇异格式的 K 理论和动机上同调
- 批准号:
0901021 - 财政年份:2009
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
相似国自然基金
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Studentship
Cohomology of Arithmetic Groups and the Stable Trace Formula
算术群的上同调与稳定迹公式
- 批准号:
545733-2020 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Postdoctoral Fellowships
Arithmetic cohomology over local fields
局部域上的算术上同调
- 批准号:
18K03258 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and Cohomology of Arithmetic and Related Groups
算术及相关群的几何和上同调
- 批准号:
1509182 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Arithmetic study of motivic cohomology, periods and regulators
动机上同调、周期和调节子的算术研究
- 批准号:
15K04769 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiple Dirichlet series, Whittaker functions, and the cohomology of arithmetic groups
多重狄利克雷级数、惠特克函数和算术群的上同调
- 批准号:
1501832 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Study on unramified cohomology and algebraic surfaces over arithmetic fields of higher dimension
高维算术域上无枝上同调和代数曲面的研究
- 批准号:
15K17526 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Generalized cohomology theories and applications to algebraic and arithmetic geometry (A07)
广义上同调理论及其在代数和算术几何中的应用(A07)
- 批准号:
260662670 - 财政年份:2014
- 资助金额:
$ 10.5万 - 项目类别:
Collaborative Research Centres
L-functions and motivic cohomology of arithmetic varieties and applications to cyclotomic fields
算术簇的 L 函数和动机上同调及其在分圆领域的应用
- 批准号:
25400007 - 财政年份:2013
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability and Arithmetic Gormetry
稳定性和算术几何学
- 批准号:
23340009 - 财政年份:2011
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




