Tree Representations and Probabilistic Zeta Functions
树表示和概率 Zeta 函数
基本信息
- 批准号:0300321
- 负责人:
- 金额:$ 6.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0300321Boston, NigelAbstractTitle: Tree Representations The investigator and his collaborators are developing a theory ofGalois group actions on rooted trees, in analogy to the well-establishedtheory of such actions on p-adic vector spaces. The Fontaine-Mazur conjectureand generalizations of it predict that for Galois groups of number fieldextensions unramified at p the latter actions have finite image whereas there should exist tree actions with infinite image. The investigator'sprogram will identify these actions and hence these (as yet mysterious) Galoisgroups, allowing direct verification of Fontaine-Mazur in these cases.Possible spin-offs of this include improved root-discriminant bounds anda quantitative version of Fontaine-Mazur along the lines of Cohen-Lenstraheuristics, together with applications for the pro-p group theorists suchas new families of branch pro-p groups. Number theory has been revolutionized in recent years by the use of "Galois representations", most notably by Wiles in his proof of Fermat'sLast Theorem. In particular his co-author, Taylor, has gone on to applythese techniques to many other longstanding problems. The only drawbackis that these methods only work in one half of cases, the "p-ramified" ones.This proposal develops a new theory of Galois representations suited tohandling the other half. The work of Taylor and Wiles proves cases of thefundamental Fontaine-Mazur conjecture, from which solutions to Fermat'sLast Theorem and similar equations simply follow - in the other halfthe Fontaine-Mazur conjecture has many striking consequences and the newtheory presents a program for verifying the conjecture and hence itscorollaries.
DMS-0300321波士顿,尼日利亚摘要标题:树表示研究人员和他的合作者正在发展一种关于根树上的伽罗华群作用的理论,类似于在p-进向量空间上的这种作用的成熟理论。Fontaine-Mazur猜想及其推广表明,对于在p处分解的数域扩张的Galois群,后者具有有限象,而应存在具有无限象的树作用。研究人员的程序将识别这些行为,从而识别这些(仍是神秘的)Galois群,从而允许在这些情况下直接验证Fontaine-Mazur。可能的副产品包括改进的根判别界限和沿着Cohen-Lenstrauristic的Fontaine-Mazur的量化版本,以及对Pro-p群理论家的应用,例如新的分支Pro-p群族。近年来,“伽罗瓦表示法”的使用使数论发生了革命性的变化,最著名的是威尔斯在他的费马大定理的证明中。特别是,他的合著者泰勒继续将这些技术应用于许多其他长期存在的问题。唯一的缺点是,这些方法只适用于一半的情况,即“p-分支”情况。这一建议发展了一种新的伽罗瓦表示理论,适用于处理另一半情况。Taylor和Wiles的工作证明了基本的Fontaine-Mazur猜想的情况,在Fontaine-Mazur猜想的另一半中,费马最后定理和类似方程的解简单地跟随着Fontaine-Mazur猜想的另一半,有许多显著的结果,新的理论提出了一个验证该猜想的程序,从而证明了它的推论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Boston其他文献
Pipelined IIR Filter Architecture Using Pole-Radius Minimization
- DOI:
10.1007/s11265-005-4848-3 - 发表时间:
2005-03-01 - 期刊:
- 影响因子:1.800
- 作者:
Nigel Boston - 通讯作者:
Nigel Boston
Exploiting algebraic structure in global optimization and the Belgian chocolate problem
- DOI:
10.1007/s10898-018-0659-5 - 发表时间:
2018-05-03 - 期刊:
- 影响因子:1.700
- 作者:
Zachary Charles;Nigel Boston - 通讯作者:
Nigel Boston
Nigel Boston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Boston', 18)}}的其他基金
AMPS: Algebraic Geometry under Uncertainty for Power Flow Systems
AMPS:潮流系统不确定性下的代数几何
- 批准号:
1735928 - 财政年份:2017
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Collaborative Research: Message-Passing Algorithms - from Practice to Theory and back to Practice
协作研究:消息传递算法——从实践到理论再回到实践
- 批准号:
0514801 - 财政年份:2005
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
MSPA-MCS: Face Recognition Using Integral Invariants and Cryptology
MSPA-MCS:使用积分不变量和密码学进行人脸识别
- 批准号:
0434355 - 财政年份:2004
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
The Unramified Fontaine-Mazur Conjecture
未分支的方丹-马祖尔猜想
- 批准号:
9970184 - 财政年份:1999
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Theory Methods in Number Theory
数学科学:数论中的群论方法
- 批准号:
9622590 - 财政年份:1996
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Galois Representations and Applications
数学科学:伽罗瓦表示及其应用
- 批准号:
9304277 - 财政年份:1993
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Constraints on Galois Representationswith Applications
数学科学:伽罗瓦表示的约束及其应用
- 批准号:
9014522 - 财政年份:1991
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 6.4万 - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Australian Laureate Fellowships
Understanding mental health in the UK welfare system: representations of distress among benefit claimants and implications for assessment and support
了解英国福利体系中的心理健康:福利申请人的痛苦表现以及对评估和支持的影响
- 批准号:
ES/X002101/2 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Research Grant
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant














{{item.name}}会员




