AMPS: Algebraic Geometry under Uncertainty for Power Flow Systems
AMPS:潮流系统不确定性下的代数几何
基本信息
- 批准号:1735928
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The National Academy of Engineering has classified widespread electrification as one of the greatest engineering achievements of the 20th century, but a 2006 study estimated that the national annual cost of power interruptions was about $79 billion dollars. The power flow equations are at the heart of all tools used by power system engineers to maintain reliable, economically operated power systems. These equations have variability, and our team of engineers and mathematicians will address in this project how this affects their solutions.These equations model the nonlinear relationship between voltages and active and reactive power injections in a power system and can be represented by multivariate quadratics. The goal now is to introduce uncertainty into the coefficients of the polynomials (the susceptances) and to investigate how their number of real solutions varies, bound it, and obtain practical algorithms for finding all these solutions under that uncertainty. The distribution of numbers of real solutions is known for general polynomial systems under assumptions such as that the coefficients are iid Gaussian but the power flow systems appear to have fewer real solutions than those results would predict. The group intends to generalize this work to our special systems, understand the phenomena, and then apply them to actual power systems.
美国国家工程院将广泛的电气化列为世纪最伟大的工程成就之一,但2006年的一项研究估计,全国每年因电力中断而造成的损失约为790亿美元。潮流方程是电力系统工程师用来维护可靠、经济运行的电力系统的所有工具的核心。这些方程具有可变性,我们的工程师和数学家团队将在本项目中讨论这如何影响他们的解决方案。这些方程模拟了电力系统中电压与有功和无功功率注入之间的非线性关系,可以用多元二次型表示。现在的目标是将不确定性引入到多项式的系数中(阻抗),并研究它们的真实的解的数量如何变化,限制它,并获得在不确定性下找到所有这些解的实用算法。一般多项式系统的真实的解的数量分布是已知的,假设下,如系数是iid高斯,但电力流系统似乎有更少的真实的解决方案比这些结果将预测。该小组打算将这项工作推广到我们的特殊系统,理解这些现象,然后将其应用于实际的电力系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Boston其他文献
Pipelined IIR Filter Architecture Using Pole-Radius Minimization
- DOI:
10.1007/s11265-005-4848-3 - 发表时间:
2005-03-01 - 期刊:
- 影响因子:1.800
- 作者:
Nigel Boston - 通讯作者:
Nigel Boston
Exploiting algebraic structure in global optimization and the Belgian chocolate problem
- DOI:
10.1007/s10898-018-0659-5 - 发表时间:
2018-05-03 - 期刊:
- 影响因子:1.700
- 作者:
Zachary Charles;Nigel Boston - 通讯作者:
Nigel Boston
Nigel Boston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Boston', 18)}}的其他基金
Collaborative Research: Message-Passing Algorithms - from Practice to Theory and back to Practice
协作研究:消息传递算法——从实践到理论再回到实践
- 批准号:
0514801 - 财政年份:2005
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
MSPA-MCS: Face Recognition Using Integral Invariants and Cryptology
MSPA-MCS:使用积分不变量和密码学进行人脸识别
- 批准号:
0434355 - 财政年份:2004
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Tree Representations and Probabilistic Zeta Functions
树表示和概率 Zeta 函数
- 批准号:
0300321 - 财政年份:2003
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
The Unramified Fontaine-Mazur Conjecture
未分支的方丹-马祖尔猜想
- 批准号:
9970184 - 财政年份:1999
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Theory Methods in Number Theory
数学科学:数论中的群论方法
- 批准号:
9622590 - 财政年份:1996
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Galois Representations and Applications
数学科学:伽罗瓦表示及其应用
- 批准号:
9304277 - 财政年份:1993
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Constraints on Galois Representationswith Applications
数学科学:伽罗瓦表示的约束及其应用
- 批准号:
9014522 - 财政年份:1991
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
- 批准号:
2349244 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
- 批准号:
2327037 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
- 批准号:
2312088 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
- 批准号:
2301474 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Research Grant














{{item.name}}会员




