Collaborative Research: Message-Passing Algorithms - from Practice to Theory and back to Practice
协作研究:消息传递算法——从实践到理论再回到实践
基本信息
- 批准号:0514801
- 负责人:
- 金额:$ 20.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research supported under this grant targets the thorough and effective understanding of message-passing algorithms which constitute a large and very potent class of estimation and detection techniques. Indeed, while message-passing (iterative) processing is very successful in practice, understanding its limitations and its sources of non-optimal behavior has been elusive. Despite the enormous impact that message-passing algorithms have, in particular in a communication scenario, practical systems currently rely almost exclusively on a simulation-based evaluation. In this situation, understanding the behavior and geometry of message-passing will not only reduce the necessity of simulations but provide powerful tools for system optimization.This proposal draws on recent exciting developments that connect message-passing algorithms to the well established theory of convex optimization. As it turns out, message-passing algorithms are intimately related to a linear programming formulation of the inference task at hand. In fact, belief propagation algorithms may be interpreted as an efficient duality-based method to closely approximate the solution to a linear program. Once such connections are established the investigators will strive to understand message-passing algorithms from an entirely new and fruitful point of view. Also, the investigators have already shown that the connection to convex optimization is rooted in the basic property of message-passing algorithms, namely that they operate only locally in a given graphical model. Thus the findings resulting from the approach investigated here will apply to any reasonable locally-operating algorithm.
这项拨款支持的研究旨在全面有效地理解消息传递算法,这些算法构成了一个庞大而非常有效的估计和检测技术类别。事实上,虽然消息传递(迭代)处理在实践中非常成功,但了解其局限性及其非最佳行为的来源一直是难以捉摸的。尽管消息传递算法具有巨大的影响,特别是在通信场景中,但实际系统目前几乎完全依赖于基于模拟的评估。在这种情况下,了解消息传递的行为和几何结构不仅可以减少模拟的必要性,还可以为系统优化提供强大的工具。这个建议借鉴了最近令人兴奋的发展,将消息传递算法与完善的凸优化理论联系起来。事实证明,消息传递算法与手头推理任务的线性规划公式密切相关。事实上,信念传播算法可以被解释为一种有效的基于对偶性的方法来接近线性规划的解。一旦建立了这样的联系,研究人员将努力从一个全新的、富有成效的角度来理解信息传递算法。此外,研究人员已经表明,与凸优化的联系根植于消息传递算法的基本属性,即它们仅在给定的图形模型中局部操作。因此,这里研究的方法所得到的结果将适用于任何合理的局部操作算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Boston其他文献
Pipelined IIR Filter Architecture Using Pole-Radius Minimization
- DOI:
10.1007/s11265-005-4848-3 - 发表时间:
2005-03-01 - 期刊:
- 影响因子:1.800
- 作者:
Nigel Boston - 通讯作者:
Nigel Boston
Exploiting algebraic structure in global optimization and the Belgian chocolate problem
- DOI:
10.1007/s10898-018-0659-5 - 发表时间:
2018-05-03 - 期刊:
- 影响因子:1.700
- 作者:
Zachary Charles;Nigel Boston - 通讯作者:
Nigel Boston
Nigel Boston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Boston', 18)}}的其他基金
AMPS: Algebraic Geometry under Uncertainty for Power Flow Systems
AMPS:潮流系统不确定性下的代数几何
- 批准号:
1735928 - 财政年份:2017
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
MSPA-MCS: Face Recognition Using Integral Invariants and Cryptology
MSPA-MCS:使用积分不变量和密码学进行人脸识别
- 批准号:
0434355 - 财政年份:2004
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Tree Representations and Probabilistic Zeta Functions
树表示和概率 Zeta 函数
- 批准号:
0300321 - 财政年份:2003
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
The Unramified Fontaine-Mazur Conjecture
未分支的方丹-马祖尔猜想
- 批准号:
9970184 - 财政年份:1999
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Theory Methods in Number Theory
数学科学:数论中的群论方法
- 批准号:
9622590 - 财政年份:1996
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Galois Representations and Applications
数学科学:伽罗瓦表示及其应用
- 批准号:
9304277 - 财政年份:1993
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Constraints on Galois Representationswith Applications
数学科学:伽罗瓦表示的约束及其应用
- 批准号:
9014522 - 财政年份:1991
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
RAPID/Collaborative Research: Agency COVID-19 Risk Communication on Social Media: Characterizing Drivers of Message Retransmission and Engagement
RAPID/协作研究:社交媒体上的机构 COVID-19 风险沟通:描述消息转发和参与的驱动因素
- 批准号:
2027399 - 财政年份:2020
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Agency COVID-19 Risk Communication on Social Media: Characterizing Drivers of Message Retransmission and Engagement
RAPID/协作研究:社交媒体上的机构 COVID-19 风险沟通:描述消息转发和参与的驱动因素
- 批准号:
2027475 - 财政年份:2020
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Agency COVID-19 Risk Communication on Social Media: Characterizing Drivers of Message Retransmission and Engagement
RAPID/协作研究:社交媒体上的机构 COVID-19 风险沟通:描述消息转发和参与的驱动因素
- 批准号:
2039199 - 财政年份:2020
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Next-Generation Message Passing for Parallel Programming: Resiliency, Time-to-Solution, Performance-Portability, Scalability, and QoS
SHF:中:协作研究:并行编程的下一代消息传递:弹性、解决时间、性能可移植性、可扩展性和 QoS
- 批准号:
1822191 - 财政年份:2017
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Next-Generation Message Passing for Parallel Programming: Resiliency, Time-to-Solution, Performance-Portability, Scalability, and QoS
SHF:中:协作研究:并行编程的下一代消息传递:弹性、解决时间、性能可移植性、可扩展性和 QoS
- 批准号:
1562306 - 财政年份:2016
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Next-Generation Message Passing for Parallel Programming: Resiliency, Time-to-Solution, Performance-Portability, Scalability, and QoS
SHF:中:协作研究:并行编程的下一代消息传递:弹性、解决时间、性能可移植性、可扩展性和 QoS
- 批准号:
1562659 - 财政年份:2016
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
SI2-SSE: Collaborative Research: ADAPT: Next Generation Message Passing Interface (MPI) Library - Open MPI
SI2-SSE:协作研究:ADAPT:下一代消息传递接口 (MPI) 库 - 开放 MPI
- 批准号:
1339763 - 财政年份:2013
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: ADAPT: Next Generation Message Passing Interface (MPI) Library - Open MPI
SI2-SSE:协作研究:ADAPT:下一代消息传递接口 (MPI) 库 - 开放 MPI
- 批准号:
1339820 - 财政年份:2013
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: The Social Medium is the Message
HCC:媒介:协作研究:社交媒体就是信息
- 批准号:
0904321 - 财政年份:2009
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: The Social Medium is the Message
HCC:媒介:协作研究:社交媒体就是信息
- 批准号:
0905485 - 财政年份:2009
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant














{{item.name}}会员




