Oscillatory Integrals and Their Bounds in Lebesgue Spaces

勒贝格空间中的振荡积分及其界限

基本信息

  • 批准号:
    0300416
  • 负责人:
  • 金额:
    $ 9.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-05-15 至 2006-04-30
  • 项目状态:
    已结题

项目摘要

Abstract DMS 0300416PI: G MockenhauptInst: GA TechThis research project in Harmonic Analysis is concerned with boundedness properties of oscillatory integral operators in Lebesgue spaces as well as analogous problems in a discrete setting, i.e. exponential sum operators corresponding to classical Gaussian sums over finite fields. Bounds on these types of operators are fundamental in understanding summation of n-dimensional Fourier series, Fourier multipliers, regularity properties of solutions of partial differential equation and problems in integral geometry. Related to these problems are questions concerning compression phenomena of families of linear subspaces (Kakeya sets) and associated maximal function inequalities. The discrete case serves here as a model to develop combinatorial tools to get a better understanding in the Euclidean setting. The proposed project focuses on questions arising from the problem of approximating a given signal by a superposition of pure tones.Depending on the approximation method employed one is lead to analyse various oscillatory integral operators. These operators arise also as solutions of fundamental equations in mathematical physics such as e.g. the wave equation and the KdV equation. Regularity and existence problems of this equations are intimately related to sharp bounds on the corresponding oscillatory integral operators.
摘要 DMS 0300416 PI:G MockenhauptInst:GA Tech调和分析的这个研究项目涉及Lebesgue空间中振荡积分算子的有界性以及离散设置中的类似问题,即有限域上对应于经典高斯和的指数和算子。这些类型的运营商的边界是基本的了解n维傅立叶级数,傅立叶乘数,正则性的偏微分方程的解决方案和积分几何问题的总和。与这些问题有关的问题是关于压缩现象的家庭的线性子空间(Kakeya集)和相关的极大函数不等式。离散的情况下,在这里作为一个模型来开发组合工具,以获得更好的理解在欧几里德设置。 该项目的重点是从一个问题所产生的问题,近似一个给定的信号的叠加的纯tones.Dependently采用的近似方法之一是导致分析各种振荡积分算子。这些算子也作为数学物理中的基本方程的解出现,例如波动方程和KdV方程。这类方程的正则性和存在性问题与相应的振动积分算子的上界密切相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerd Mockenhaupt其他文献

Approximation of p-multiplier Operators via their Spectral Projections
  • DOI:
    10.1007/s11117-007-2139-x
  • 发表时间:
    2007-10-29
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Gerd Mockenhaupt;Werner J. Ricker
  • 通讯作者:
    Werner J. Ricker

Gerd Mockenhaupt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerd Mockenhaupt', 18)}}的其他基金

NSF/CBMS Regional Conference in the Mathematical Sciences: Wave Packets, Multilinear Operators and Carleson Theorems; May 23-28, 2004; Atlanta, GA
NSF/CBMS 数学科学区域会议:波包、多线性算子和卡尔森定理;
  • 批准号:
    0332476
  • 财政年份:
    2004
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Standard Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
  • 批准号:
    23K03164
  • 财政年份:
    2023
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear integrals in nonadditive measure theory and their study based on a perturbative method
非加性测度论中的非线性积分及其基于微扰法的研究
  • 批准号:
    26400130
  • 财政年份:
    2014
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on periodic surfaces using their representations by integrals of conformal one-forms
使用共形一式积分表示的周期曲面研究
  • 批准号:
    22540064
  • 财政年份:
    2010
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential equations reduced to transcendental equations including complete elliptic integrals and their global solution structure
微分方程简化为超越方程,包括完全椭圆积分及其全局解结构
  • 批准号:
    21540232
  • 财政年份:
    2009
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of infinite product formulae for the Jackson integrals with Weyl group symmetry and their applications.
具有Weyl群对称性的Jackson积分的无限乘积公式及其应用的研究。
  • 批准号:
    15540045
  • 财政年份:
    2003
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Oscillatory Integrals, Singular Integrals, and Their Applications
数学科学:振荡积分、奇异积分及其应用
  • 批准号:
    9622979
  • 财政年份:
    1996
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory Integrals in Harmonic Analysis and Their Applications
数学科学:调和分析中的振荡积分及其应用
  • 批准号:
    9401277
  • 财政年份:
    1994
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Standard Grant
Elliptic Integrals, Lattice Sums and Their Applications
椭圆积分、格和及其应用
  • 批准号:
    8021280
  • 财政年份:
    1981
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Continuing Grant
Travel to Attend Nato Advanced Study Institute on "Path Integrals & Their Applications in Quantum, Statistical, & Solid State Physics, Antwerp, Belgium, July 17-30, 1
前往北约高级研究院学习“路径积分”
  • 批准号:
    7722741
  • 财政年份:
    1977
  • 资助金额:
    $ 9.82万
  • 项目类别:
    Standard Grant
STOCHASTIC INTEGRALS, CONTROL THEORY, VARIATIONAL METHODS, AND THEIR APPLICATIONS
随机积分、控制理论、变分方法及其应用
  • 批准号:
    7102545
  • 财政年份:
    1975
  • 资助金额:
    $ 9.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了