A Revolutionary Boundary Element Approach Based on Energy Conservation for Interior Noise Predictions
基于能量守恒的革命性边界元方法用于内部噪声预测
基本信息
- 批准号:0301513
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The analysis of high frequency broadband sound fields is of interest in architectural acoustics and in the aircraft and automotive industries, where interior noise prediction and reduction are important. This project will provide a computationally efficient and accurate analysis tool for the prediction of sound pressure levels in enclosures that contain broadband, high frequency sound waves. The novelty of the proposed boundary element method is that the problem and boundary conditions are recast in terms of time-averaged variables (mean-square pressure, energy, and intensity) rather than the time-varying quantities of pressure and velocity, and the infinitesimal sources that comprise each element are broadband directional uncorrelated sources. Furthermore, this method is unique among emerging energy-based boundary element or finite element methods because it does not need to assume that the acoustic medium is dissipative, nor does it assume that the boundaries are entirely diffusely reflecting. The difficulty with analyzing broadband systems in the high frequency range is that they contain a large number of modes and frequencies. Therefore, approaches based on modal analysis, as well as traditional finite element or boundary element methods, become computationally cumbersome. The proposed method is extremely efficient because each frequency in the band does not need to be considered separately and individual elements can be large compared to a wavelength. The resulting gain in computational efficiency is orders of magnitude over a traditional approach. Alternative efficient methods that have been developed for lightly damped systems are inaccurate when damping levels are not small. Typical structural-acoustic systems contain significant levels of damping, since most systems are designed to reduce vibration and interior noise levels. The method being proposed is not restricted to lightly damped situations and therefore will be applicable to more practical systems. Intellectual merit: The development of the boundary element method that was described above will provide a new tool for the analysis of high frequency broadband sound fields. This novel boundary element method will provide a much-needed alternative to traditional analyses, and represents a paradigm shift in the way that these types of sound fields are treated. Additionally, the availability of such an analysis tool will enable more efficient and accurate analyses, and thereby facilitate design of better acoustic spaces be they rooms or vehicle interiors. Broader impacts: The proposed plan of work includes theoretical, computational, and experimental components. All of these results will be disseminated broadly, published, and presented at national and international conferences. The boundary element method has the potential for commercial development and use in architectural acoustics. Another broader impact of this research project is the integration of research and education through "hands on" experiences with acoustics both in a classroom setting and in the laboratory. Students will have the opportunity to use the software developed under this grant in order to simulate sound fields in enclosures of their choosing and will be involved in performing experiments that support this research. Both undergraduate and graduate students, with particular attention being paid to underrepresented groups, will participate in this research.
高频宽带声场的分析在建筑声学以及飞机和汽车工业中非常重要,在这些行业中,室内噪声的预测和降低非常重要。该项目将提供一种计算高效和准确的分析工具,用于预测包含宽带高频声波的舱室内的声压级。所提出的边界元方法的创新之处在于,问题和边界条件是用时间平均变量(均方压力、能量和强度)来重铸的,而不是压力和速度的时变量,并且构成每个单元的无限小源是宽带方向不相关的源。此外,这种方法在新兴的基于能量的边界元或有限元方法中是独一无二的,因为它不需要假设声学介质是耗散的,也不需要假设边界是完全漫反射的。在高频范围内分析宽带系统的困难在于它们包含大量的模式和频率。因此,基于模态分析的方法以及传统的有限元或边界元方法在计算上变得繁琐。所提出的方法是非常有效的,因为不需要单独考虑频带中的每个频率,并且与波长相比,单个元素可以很大。由此产生的计算效率比传统方法提高了几个数量级。当阻尼水平不小时,已开发的用于轻阻尼系统的替代有效方法是不准确的。典型的结构-声学系统包含显著的阻尼级,因为大多数系统都是为降低振动和室内噪声而设计的。所提出的方法并不局限于轻阻尼的情况,因此将适用于更实际的系统。智能优点:上述边界元方法的发展将为高频宽带声场的分析提供一个新的工具。这种新的边界元方法将为传统分析提供一种急需的替代方法,并代表着处理这些类型声场的方式的范式转变。此外,这种分析工具的提供将使分析更加高效和准确,从而促进更好的声学空间的设计,无论是房间还是车辆内部。更广泛的影响:拟议的工作计划包括理论、计算和实验部分。所有这些成果都将广泛传播、出版并在国家和国际会议上公布。边界元方法在建筑声学中具有商业开发和应用的潜力。这一研究项目的另一个更广泛的影响是,通过在课堂和实验室中的声学实践经验,将研究和教育结合起来。学生将有机会使用根据这项资助开发的软件来模拟他们选择的封闭空间中的声场,并将参与执行支持这项研究的实验。本科生和研究生都将参与这项研究,特别关注代表性不足的群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Franzoni其他文献
Linda Franzoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Franzoni', 18)}}的其他基金
Energy-Based Boundary Elements to Predict Broadband Sound Fields in Enclosures
基于能量的边界元预测外壳中的宽带声场
- 批准号:
0626371 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
High Frequency Methods for Solutions to Structural-Acoustic Systems with Significant Damping
用于解决具有显着阻尼的结构声学系统的高频方法
- 批准号:
9900407 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
A Hybrid Asymptotic Model Analysis Method for Structural- Acoustics
结构声学混合渐近模型分析方法
- 批准号:
9896345 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
A Hybrid Asymptotic Model Analysis Method for Structural- Acoustics
结构声学混合渐近模型分析方法
- 批准号:
9501285 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic Modal Analysis for Damped Structural - Acoustic Systems
阻尼结构声学系统的渐近模态分析
- 批准号:
9396174 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic Modal Analysis for Damped Structural - Acoustic Systems
阻尼结构声学系统的渐近模态分析
- 批准号:
9209970 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fundamental Insights into Multi-element Grain Boundary Segregation in Nanocrystalline Alloys
纳米晶合金中多元素晶界偏析的基本见解
- 批准号:
2343682 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Finite-element implementation of periodic boundary conditions for 1D wave propagation
一维波传播周期性边界条件的有限元实现
- 批准号:
574992-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
A new boundary element method for free surface flows
一种新的自由表面流边界元方法
- 批准号:
573089-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Boundary element method for domains whose Green's function is not available
格林函数不可用域的边界元法
- 批准号:
21K19764 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Bembel: The Boundary Element Based Engineering Library
Bembel:基于边界元的工程库
- 批准号:
443179833 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Fundamental Insights into Multi-element Grain Boundary Segregation in Nanocrystalline Alloys
纳米晶合金中多元素晶界偏析的基本见解
- 批准号:
2114832 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral