Extremal Graph Theory and Bootstrap Percolation
极值图论和 Bootstrap 渗滤
基本信息
- 批准号:0302804
- 负责人:
- 金额:$ 7.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2006-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for award of Balog DMS-0302804The proposed research areas are extremal graph theory and bootstrap percolation. They are not far from each other, as many probabilistic tools are used in the first one, and many combinatorial ideas are needed in the second one. The need of computer science and demands from applications where discrete models play more and more important roles, increase the importance of extremal graph theory and suggests an algorithmic point of view. For about forty years now, percolation theory has been an active area of research at the interface of probability theory, combinatorics and physics. Interest in various aspects of standard percolation remains high, including estimates of critical probabilities. Lately more and more variants of the standard percolation models have been studied, in particular, the family of processes known as bootstrap percolation. Recent applications arise from different aspects, for example from spatio-temporal dynamical systems. Computer experiments performed by physicists have suggested interesting non-trivial large-scale behavior, and many deep mathematical results have been proved about a number of models.The proposer is aiming to study the percolation process at the critical probability.The work of the proposer is an extension of Turan's Theorem into several directions. One direction is to describe graph families which do not contain certain induced subgraphs. The other is to study Turan type of questions on hypergraphs, in particular on triple systems, and to develop general tools like regularity and stability theorems.Bootstrap percolation, a member of the family of random cellular automata, is a process on graphs, where each site is open or closed with a certain probability, and these states are changing with time.Studying bootstrap percolation, the main aim of the proposer is to describe the phase transition, estimate the critical probability, and the size of the window around the critical probability. The plan is to prove that the transitions are sharp, and to investigate different models, whose understanding would be helpful in the applications.
巴洛格DMS-0302804奖摘要建议的研究领域是极值图论和Bootstrap渗流。第一种方法使用了许多概率工具,第二种方法需要许多组合思想,所以它们之间并不遥远。计算机科学的需要和离散模型发挥着越来越重要作用的应用的需求,增加了极值图论的重要性,并提出了算法的观点。近四十年来,渗流理论一直是概率论、组合学和物理学交界的一个活跃研究领域。人们对标准渗流的各个方面仍然很感兴趣,包括对临界概率的估计。最近,越来越多的标准渗流模型的变体被研究,特别是被称为Bootstrap渗流的过程家族。最近的应用来自不同的方面,例如时空动力系统。由物理学家进行的计算机实验表明了一些有趣的非平凡的大尺度行为,许多深刻的数学结果已经在一些模型上得到了证明。一个方向是描述不包含某些导出子图的图族。二是研究超图上的Turan型问题,特别是三元系上的Turan型问题,并发展正则性和稳定性定理等通用工具。Bootstrap渗流是随机细胞自动机家族的成员之一,它是图上的一个过程,其中每个站点以一定的概率打开或关闭,这些状态随时间变化。研究Bootstrap渗流的主要目的是描述相变,估计临界概率,以及临界概率附近的窗口大小。我们的计划是证明转变是尖锐的,并研究不同的模型,这些模型的理解将有助于应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jozsef Balog其他文献
Jozsef Balog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jozsef Balog', 18)}}的其他基金
FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
- 批准号:
2152488 - 财政年份:2022
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Global and Local Properties of Discrete Structures
离散结构的全局和局部属性
- 批准号:
1764123 - 财政年份:2018
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
CAREER: Methods and Outreach in Modern Combinatorics
职业:现代组合学的方法和推广
- 批准号:
0745185 - 财政年份:2008
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
Extremal Graph Theory and Bootstrap Percolation
极值图论和 Bootstrap 渗滤
- 批准号:
0603769 - 财政年份:2005
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
- 批准号:
2243938 - 财政年份:2023
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Graph Theory and Extremal Combinatorics
图论和极值组合学
- 批准号:
576024-2022 - 财政年份:2022
- 资助金额:
$ 7.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Extremal graph theory and Ramsey theory
极值图论和拉姆齐理论
- 批准号:
RGPIN-2016-05959 - 财政年份:2021
- 资助金额:
$ 7.85万 - 项目类别:
Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
- 批准号:
RGPIN-2017-05010 - 财政年份:2021
- 资助金额:
$ 7.85万 - 项目类别:
Discovery Grants Program - Individual
Extremal Graph Theory and Sums of Squares
极值图论和平方和
- 批准号:
2054404 - 财政年份:2021
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
- 批准号:
RGPIN-2017-05010 - 财政年份:2020
- 资助金额:
$ 7.85万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Extremal Graph Theory and Dynamical Systems
REU 站点:极值图论和动力系统
- 批准号:
1950189 - 财政年份:2020
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant