CAREER: Methods and Outreach in Modern Combinatorics

职业:现代组合学的方法和推广

基本信息

  • 批准号:
    0745185
  • 负责人:
  • 金额:
    $ 52.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2015-01-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to carry out a wide range of scholarly and educational projects related to his research interests in extremal and probabilistic combinatorics. In his research, the PI makes substantial use of Szemeredi's Regularity Lemma to tackle structural and enumerative problems. This Lemma is one of the most powerful tools in modern combinatorics, it has applications not only in combinatorics but in analysis and additive number theory as well. The original form of the Lemma concerns dense graphs, but in many applications one would need a sparse version of the Lemma. The PI plans to develop the theory of sparse regularity, so that it might be applied to solve a wide range of problems. Furthermore, the PI proposes to study phase transitions in bootstrap percolation, which are related to models in statistical physics, such as the Ising model. In addition to persuing his own research, the investigator proposes a great variety of educational and outreach activities.The understanding of complex discrete and combinatorial structures is crucial in many areas of modern science and technology. The PI is convinced that the new approaches and techniques resulting from his project will lead to further developments, not only in Discrete Mathematics, but also in other fields such as Information Theory, Computer Science and Statistical Physics. Since his area is relatively accessible to a wider audience, the PI proposes numerous educational outreach activities. He plans to organize several conferences, including one whose participants will mainly be graduate students, to develop courses providing a gentle introduction to a variety of powerful methods in modern Combinatorics, including one for undergraduates, and mentoring students on their own projects, leading to Masters and Ph.D degrees.
PI建议开展与他在极值和概率组合学方面的研究兴趣相关的广泛的学术和教育项目。在他的研究中,PI大量使用了Szemeredi的正则引理来解决结构和枚举问题。这个引理是现代组合学中最有力的工具之一,它不仅在组合学中有应用,而且在分析和加性数论中也有应用。引理的原始形式涉及密集图,但在许多应用中需要引理的稀疏版本。PI计划发展稀疏规则理论,以便它可以应用于解决广泛的问题。此外,PI建议研究自举渗流中的相变,这与统计物理模型(如Ising模型)有关。除了进行自己的研究外,研究者还提出了各种各样的教育和推广活动。对复杂的离散和组合结构的理解在现代科学技术的许多领域都是至关重要的。PI相信,从他的项目中产生的新方法和技术将导致进一步的发展,不仅在离散数学,而且在其他领域,如信息论,计算机科学和统计物理。由于他的领域相对容易接触到更广泛的受众,PI提出了许多教育推广活动。他计划组织几次会议,其中一次与会者将主要是研究生,以开发课程,对现代组合学中各种强大的方法进行温和的介绍,其中包括针对本科生的课程,并指导学生完成自己的项目,最终获得硕士和博士学位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jozsef Balog其他文献

Jozsef Balog的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jozsef Balog', 18)}}的其他基金

FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
  • 批准号:
    2152488
  • 财政年份:
    2022
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
RTG: Research in Combinatorics
RTG:组合学研究
  • 批准号:
    1937241
  • 财政年份:
    2020
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
Global and Local Properties of Discrete Structures
离散结构的全局和局部属性
  • 批准号:
    1764123
  • 财政年份:
    2018
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
Sparse Discrete Structures
稀疏离散结构
  • 批准号:
    1500121
  • 财政年份:
    2015
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
Extremal Graph Theory and Bootstrap Percolation
极值图论和 Bootstrap 渗滤
  • 批准号:
    0603769
  • 财政年份:
    2005
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
Extremal Graph Theory and Bootstrap Percolation
极值图论和 Bootstrap 渗滤
  • 批准号:
    0302804
  • 财政年份:
    2003
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 52.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了