Properties at Averaging Operators, and Applications to Fourier Analysis
平均算子的性质及其在傅里叶分析中的应用
基本信息
- 批准号:0303413
- 负责人:
- 金额:$ 8.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will conduct basic research on Harmonic Analysis and Partial Differential Equations, focusing on problems in harmonic analysis in Euclidean spaces centered around Lebesgue norm inequalities. One subject of ongoing research (partly joint with M. Christ) is the mapping properties of Generalized Radon Transforms -- a vast class of averaging operators over lower dimensional submanifolds. Satisfactory results in some cases have been obtained by the PI, via the application of techniques developed by Bourgain, Wolff, and others for the Kakeya problem. Generalized Radon transforms are still poorly understood, except in special cases, and Kakeya-related methods have a great deal more to offer. Understanding generalized Radon transforms is an important ingredient in the analysis of summability of multi-dimensional Fourier nseries and integrals, of more general oscillatory integrals, and of linear and nonlinear wave equations. Other related problems, including the Fourier restriction phenomenon and issues in Geometric Measure Theory such as the packing of submanifolds into Euclidean space, will also be investigated.Fourier analysis has always found wide applications in natural sciences and engineering.It underlies a powerful and diverse array of tools currently widely used in applications, and offers the promise of further applications in the future. The proposed research deals with foundational issues which may ultimately help to underpin such future applications. Summability theory of multi-dimensional Fourier series and related oscillatory integral problems are irreplaceable tools in the study of a wide class of PDEs, in which the current state of knowledge is incomplete. The proposed research will contribute to the general understanding of these problems. The planned research is related to certain discrete problems of interest in Combinatorics and Number Theory, which in most cases remain wide open.
PI将进行调和分析和偏微分方程组的基础研究,重点研究以勒贝格范数不等式为中心的欧氏空间中的调和分析问题。正在进行的研究(部分与M.Christian联合)的一个主题是广义Radon变换的映射性质,广义Radon变换是低维子流形上的一大类平均算子。在某些情况下,PI通过应用Bourain、Wolff等人开发的技术来解决Kakeya问题,获得了满意的结果。除了在特殊情况下,广义Radon变换仍然知之甚少,Kakeya相关的方法可以提供更多的东西。了解广义Radon变换是分析多维傅里叶级数和积分、更一般的振荡积分以及线性和非线性波动方程的可和性的重要组成部分。其他相关的问题,包括傅里叶限制现象和几何测度论中的问题,如子流形到欧氏空间的填充,也将被研究。傅立叶分析在自然科学和工程中一直得到广泛的应用,它是目前广泛应用于应用中的一系列强大而多样的工具的基础,并提供了未来进一步应用的前景。拟议的研究涉及的基础性问题可能最终有助于支持这种未来的应用。多维傅立叶级数的可和性理论及其相关的振荡积分问题是研究一类知识不完备的偏微分方程组不可替代的工具。拟议的研究将有助于对这些问题的总体理解。计划中的研究与组合学和数论中感兴趣的某些离散问题有关,这些问题在大多数情况下仍然是开放的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehmet Erdogan其他文献
Variations of <sup>222</sup>Rn concentrations over active fault system in Simav, Kütahya, Western Turkey: Possible causes for soil-gas <sup>222</sup>Rn anomalies
- DOI:
10.1016/j.apradiso.2022.110484 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Kaan Manisa;Mehmet Erdogan;Veysel Zedef;Hasan Bircan;Ahmet Biçer - 通讯作者:
Ahmet Biçer
The Nature of the Tensile Fracture in Austempered Ductile Iron with Dual Matrix Microstructure
- DOI:
10.1007/s11665-009-9386-x - 发表时间:
2009-03-06 - 期刊:
- 影响因子:2.000
- 作者:
Volkan Kilicli;Mehmet Erdogan - 通讯作者:
Mehmet Erdogan
Adipose tissue indices predict prognosis in hodgkin lymphoma.
脂肪组织指数可预测霍奇金淋巴瘤的预后。
- DOI:
10.1016/j.leukres.2024.107457 - 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Demircan Özbalcı;Mehmet Erdogan;E. Alanoglu;S. S. Şengül;Kamuran Yüceer;Hande Nur Eroğlu;Samet Yağcı - 通讯作者:
Samet Yağcı
The spheroidization behavior of low alloy white cast iron and its effect on impact toughness and wear resistance
低合金白口铸铁的球化行为及其对冲击韧性和耐磨性的影响
- DOI:
10.1016/j.jallcom.2024.178373 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:6.300
- 作者:
Ruziye Camkerten;Kemal Davut;Tolga Yilmaz;Burak Nalcaci;Mehmet Erdogan - 通讯作者:
Mehmet Erdogan
Carotid Artery Back Pressure and Cerebral Intolerance During the Occlusion in Carotid Stenting with the Mo.Ma Proximal Embolic Protection Device
- DOI:
10.1016/j.jacc.2013.08.240 - 发表时间:
2013-10-29 - 期刊:
- 影响因子:
- 作者:
Mehmet Bilge;Recai Alemdar;Sina Ali;Ayse Saatci Yasar;Özgür Kırbas;Ahmet Akdi;Özge Kurmus;Turgay Aslan;Cemal Koseoglu;Bilge Karaduman Duran;Mehmet Erdogan;Serkan Sivri;Halan Süygün - 通讯作者:
Halan Süygün
Mehmet Erdogan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehmet Erdogan', 18)}}的其他基金
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
- 批准号:
2154031 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
- 批准号:
1501041 - 财政年份:2015
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Research in harmonic analysis and partial differential equations
调和分析与偏微分方程研究
- 批准号:
1201872 - 财政年份:2012
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Research in harmonic analysis and partial differential equations
调和分析与偏微分方程研究
- 批准号:
0900865 - 财政年份:2009
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Research in Harmonic Analysis with applications to Geometric Measure Theory and PDE's
调和分析研究及其在几何测度理论和偏微分方程中的应用
- 批准号:
0600101 - 财政年份:2006
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Properties at Averaging Operators, and Applications to Fourier Analysis
平均算子的性质及其在傅里叶分析中的应用
- 批准号:
0540084 - 财政年份:2004
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
相似海外基金
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Ensemble Averaging and the Anti-de Sitter/Conformal Field Theory Correspondence
系综平均和反德西特/共形场论对应
- 批准号:
575727-2022 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
In situ in vivo and ex vivo study of the aging human brain: towards creating an MRI and histology brain template averaging 100 cases
衰老人脑的原位体内和离体研究:创建平均 100 个病例的 MRI 和组织学大脑模板
- 批准号:
RGPIN-2021-03886 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Discovery Grants Program - Individual
In situ in vivo and ex vivo study of the aging human brain: towards creating an MRI and histology brain template averaging 100 cases
衰老人脑的原位体内和离体研究:创建平均 100 个病例的 MRI 和组织学大脑模板
- 批准号:
RGPIN-2021-03886 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Discovery Grants Program - Individual
Cut and project schemes, combinatorics and averaging properties for Toeplitz subshifts
Toeplitz 子移的剪切和投影方案、组合数学和平均属性
- 批准号:
454053022 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
WBP Fellowship
Collaborative Research: Comparative Taphonomy and Time-Averaging of Mollusk-Echinoid Assemblages using High-Performance Radiocarbon Dating System
合作研究:使用高性能放射性碳测年系统对软体动物-海胆组合进行比较埋藏学和时间平均
- 批准号:
2127644 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Collaborative Research: Comparative Taphonomy and Time-Averaging of Mollusk-Echinoid Assemblages using High-Performance Radiocarbon Dating System
合作研究:使用高性能放射性碳测年系统对软体动物-海胆组合进行比较埋藏学和时间平均
- 批准号:
2127623 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
In situ in vivo and ex vivo study of the aging human brain: towards creating an MRI and histology brain template averaging 100 cases
衰老人脑的原位体内和离体研究:创建平均 100 个病例的 MRI 和组织学大脑模板
- 批准号:
DGECR-2021-00228 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Discovery Launch Supplement
Averaging, spectral multipliers, sparse domination and subelliptic operators
平均、谱乘数、稀疏支配和次椭圆算子
- 批准号:
2054220 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Averaging Pitot Tubes - K Factor Enhancement
平均皮托管 - K 系数增强
- 批准号:
105996 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
Collaborative R&D