Research in harmonic analysis and partial differential equations

调和分析与偏微分方程研究

基本信息

  • 批准号:
    0900865
  • 负责人:
  • 金额:
    $ 27.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The PI will undertake research in harmonic analysis, and partial differential equations (PDE). In PDE, the focus is on the dynamical properties of Schrodinger evolution (SE). One subject of on-going research is dispersive estimates for SE. He will also work on mathematical problems on non-linear SE motivated by the numerical studies in fiber optic communication systems. In harmonic analysis, he focuses on problems in Euclidean spaces centered around Lebesgue norm inequalities. In particular, he proposes to continue his investigations on restriction estimates relative to fractal measures, and on their applications in PDE and geometric measure theory. He also proposes to continue his research on the mapping properties of generalized Radon transforms (GRT) -- a huge class of averaging operators over lower dimensional submanifolds of Euclidean spaces. By applying the techniques developed for Kakeya problems, he obtained interesting results in some cases. The results on the mapping properties of GRT have important applications in Fourier restriction phenomenon and in general in the summability theory of multi-dimensional Fourier series.Harmonic analysis has always found wide applications in natural sciences and engineering. It underlies a powerful and diverse array of tools currently widely used in applications, and offers the promise of further applications in the future. The proposed research deals with foundational issues which may ultimately help to underpin such future applications. The proposed research on nonlinear SE are directly motivated by the engineering problems in fiber optic communication systems, and the methods used are likely to be useful in a range of applications. The study of the mapping properties of GRT has various applications in engineering. For example, the X-ray transform (which is a particular GRT) applied to the density function of a patients body is essentially the data obtained by magnetic resonance imaging. The study of Fourier restriction, summability theory of multi-dimensional Fourier series, and dispersive estimates are irreplaceable tools in the study of a wide class of PDE. The proposed research would make a contribution to the general understanding of these problems. The planned research is also related to certain discrete problems of interest in combinatorics and number theory, which in most cases remain wide open.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。PI将进行谐波分析和偏微分方程(PDE)的研究。在偏微分方程中,重点是研究薛定谔演化(SE)的动力学性质。一个正在进行的研究主题是SE的分散估计。他也将在光纤通信系统的数值研究中研究非线性SE的数学问题。在调和分析中,他着重研究欧几里得空间中以勒贝格范数不等式为中心的问题。特别是,他打算继续研究与分形测度相关的限制估计,以及它们在偏微分方程和几何测度理论中的应用。他还建议继续研究广义Radon变换(GRT)的映射性质——广义Radon变换是欧氏空间的低维子流形上的一大类平均算子。通过应用为Kakeya问题开发的技术,他在某些情况下获得了有趣的结果。关于GRT映射性质的研究结果在傅里叶限制现象和多维傅里叶级数的可和性理论中具有重要的应用。谐波分析在自然科学和工程中有着广泛的应用。它是目前在应用程序中广泛使用的强大而多样的工具阵列的基础,并提供了未来进一步应用程序的承诺。拟议的研究涉及基础问题,这些问题最终可能有助于支持这种未来的应用。本文提出的非线性SE研究是由光纤通信系统中的工程问题直接激发的,所采用的方法可能在一系列应用中有用。研究GRT的映射特性在工程上有着广泛的应用。例如,对患者身体的密度函数进行x射线变换(这是一个特定的GRT),本质上是通过磁共振成像获得的数据。傅里叶限制的研究、多维傅里叶级数的可和性理论以及色散估计是研究一类广泛的偏微分方程不可替代的工具。拟议的研究将有助于对这些问题的普遍理解。计划中的研究也与组合学和数论中某些离散问题有关,这些问题在大多数情况下仍然是开放的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehmet Erdogan其他文献

Variations of <sup>222</sup>Rn concentrations over active fault system in Simav, Kütahya, Western Turkey: Possible causes for soil-gas <sup>222</sup>Rn anomalies
  • DOI:
    10.1016/j.apradiso.2022.110484
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kaan Manisa;Mehmet Erdogan;Veysel Zedef;Hasan Bircan;Ahmet Biçer
  • 通讯作者:
    Ahmet Biçer
The Nature of the Tensile Fracture in Austempered Ductile Iron with Dual Matrix Microstructure
Adipose tissue indices predict prognosis in hodgkin lymphoma.
脂肪组织指数可预测霍奇金淋巴瘤的预后。
  • DOI:
    10.1016/j.leukres.2024.107457
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Demircan Özbalcı;Mehmet Erdogan;E. Alanoglu;S. S. Şengül;Kamuran Yüceer;Hande Nur Eroğlu;Samet Yağcı
  • 通讯作者:
    Samet Yağcı
The spheroidization behavior of low alloy white cast iron and its effect on impact toughness and wear resistance
低合金白口铸铁的球化行为及其对冲击韧性和耐磨性的影响
  • DOI:
    10.1016/j.jallcom.2024.178373
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Ruziye Camkerten;Kemal Davut;Tolga Yilmaz;Burak Nalcaci;Mehmet Erdogan
  • 通讯作者:
    Mehmet Erdogan
Carotid Artery Back Pressure and Cerebral Intolerance During the Occlusion in Carotid Stenting with the Mo.Ma Proximal Embolic Protection Device
  • DOI:
    10.1016/j.jacc.2013.08.240
  • 发表时间:
    2013-10-29
  • 期刊:
  • 影响因子:
  • 作者:
    Mehmet Bilge;Recai Alemdar;Sina Ali;Ayse Saatci Yasar;Özgür Kırbas;Ahmet Akdi;Özge Kurmus;Turgay Aslan;Cemal Koseoglu;Bilge Karaduman Duran;Mehmet Erdogan;Serkan Sivri;Halan Süygün
  • 通讯作者:
    Halan Süygün

Mehmet Erdogan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehmet Erdogan', 18)}}的其他基金

Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    2154031
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    1501041
  • 财政年份:
    2015
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Continuing Grant
Research in harmonic analysis and partial differential equations
调和分析与偏微分方程研究
  • 批准号:
    1201872
  • 财政年份:
    2012
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Continuing Grant
Research in Harmonic Analysis with applications to Geometric Measure Theory and PDE's
调和分析研究及其在几何测度理论和偏微分方程中的应用
  • 批准号:
    0600101
  • 财政年份:
    2006
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Properties at Averaging Operators, and Applications to Fourier Analysis
平均算子的性质及其在傅里叶分析中的应用
  • 批准号:
    0540084
  • 财政年份:
    2004
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Properties at Averaging Operators, and Applications to Fourier Analysis
平均算子的性质及其在傅里叶分析中的应用
  • 批准号:
    0303413
  • 财政年份:
    2003
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
系数在局部常层中的上同调理论及其到代数几何的应用
  • 批准号:
    10471105
  • 批准年份:
    2004
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    2154031
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154335
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154321
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154402
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205852
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Research Testbed 1
研究试验台1
  • 批准号:
    10538593
  • 财政年份:
    2021
  • 资助金额:
    $ 27.03万
  • 项目类别:
Research Testbed 1
研究试验台1
  • 批准号:
    10374453
  • 财政年份:
    2021
  • 资助金额:
    $ 27.03万
  • 项目类别:
Collaborative Research: Computational Harmonic Analysis Approach to Active Learning
协作研究:主动学习的计算调和分析方法
  • 批准号:
    2012266
  • 财政年份:
    2020
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Harmonic Analysis Approach to Active Learning
协作研究:主动学习的计算调和分析方法
  • 批准号:
    2012355
  • 财政年份:
    2020
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了