Mathematical Problems in Low Frequency Electromagnetic Inversion and in Inverse Scattering in Random Media
随机介质中低频电磁反演和逆散射的数学问题
基本信息
- 批准号:0305056
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We consider theoretical and numerical studies of two inverse problems:(a) Low frequency electromagnetic inversion, where we seek unknowncoefficients (electrical conductivity/permittivity) in ellipticsystems of equations, inside a bounded domain, given the Neumann toDirichlet map at the boundary. We explore the use of variationalprinciples in the solution of such problems. In particular, we wishto develop new, variational reconstruction algorithms and to studyresolution limits (distinguishability). In numerical inversion, havinga proper discretization is paramount. We propose a finite differencediscretization of the problem, on optimal grids. We have demonstratedthat optimal grids give stable and efficient inversion algorithms, inone dimensional (Sturm-Liouville) problems. We wish to study furtherthe optimal grids and to extend them to higher dimensions. (b) Inverse scattering in random media, where we wish to image thereflectivity of targets buried in clutter, which we model as a randommedium. We are interested in remote sensing regimes, with significantmultipathing (multiscattering) of the waves, by the inhomogeneities inclutter. The proposed work starts with a close look at wave propagation in random media and it strives to develop statisticallystable imaging algorithms, which give reliable images, independent ofone's lack of knowledge of the details of the clutter.We consider theoretical and numerical studies of two inverse problems:(a) The first problem considers the recovery of properties such as theelectrical conductivity and permittivity of a body, given measurementsof electric currents and voltages, or the electric and magnetic fields, at the surface of the body. Because different materials display different electrical properties, these problems are important whenever we wish to infer the internal structure of a body, by gathering data at its periphery. Examples of applications are: (1) In medicine: for detection of pulmonary emboli, monitoring of heart function and blood flow, detection of breast tumors, etc. (2) In environmental sciences: for detection of leaks in underground tanks, monitoring of underground flows, etc. (3) Nondestructive testing of materials: detection of corrosion, cracks and voids in metals,etc. Our research focuses on using state of the art variational techniques and optimal grids (parametrizations), to obtain efficient and reliable recoveries of the unknown electrical properties inside the body. (b) The second problem considers the detection and imaging of targetsin clutter, via active arrays of antennas (transducers) which sendprobing signals in the medium and record the scattered echoes. Imagingin clutter is not well understood, so far, but it has importantapplications in ultrasound imaging, land or shallow water minedetection, ground or foliage penetrating radar, etc. Our approach toimaging in clutter is based on knowledge of wave propagation in randommedia and it considers the development of statistically stable imagingalgorithms, which give reliable results, independent of one'suncertainty of the clutter.
我们考虑两个反问题的理论和数值研究:(a)低频电磁反演,在有界区域内,给定边界处的Neumann-Dirichlet映射,在椭圆方程组中寻找未知系数(电导率/介电常数)。我们探讨了变分原理在解决这类问题中的应用。 特别是,我们希望开发新的,变分重建算法和研究分辨率限制(可扩展性)。在数值反演中,适当的离散化至关重要。 我们提出了一个有限差分离散化的问题,最佳网格。 我们已经证明,最佳网格提供稳定和有效的反演算法,一维(Sturm-Liouville)问题。 我们希望进一步研究最优网格,并将其推广到更高的维度。 (b)在随机介质中的逆散射,我们希望图像的反射率的目标埋在杂波,我们作为一个随机介质模型。我们感兴趣的遥感制度,与显着multipathing(多散射)的波,由inhomogeneities incluter。 建议的工作开始仔细看看波在随机介质中的传播,它努力开发的criticalstable成像算法,这给可靠的图像,独立于一个人的缺乏知识的细节的杂波。我们考虑两个逆问题的理论和数值研究:(a)第一个问题考虑恢复的属性,如身体的电导率和介电常数,给定measurementsof电流和电压,或电场和磁场,在身体的表面。由于不同的材料显示出不同的电学特性,因此,每当我们希望通过收集物体外围的数据来推断其内部结构时,这些问题都很重要。 应用实例如下:(1)在医学方面:用于检测肺栓塞、监测心脏功能和血流、检测乳腺肿瘤等。(2)环境科学:用于检测地下储罐泄漏、监测地下流量等。(3)材料的无损检测:我们的研究重点是使用最先进的变分技术和最佳网格(参数化),以获得体内未知电特性的有效和可靠的恢复。 (b)第二个问题考虑了目标杂波的检测和成像,通过有源天线阵列(换能器)在介质中发送探测信号并记录散射回波。到目前为止,杂波中的成像还没有得到很好的理解,但它在超声成像、陆地或浅水地雷探测、地面或叶面穿透雷达等方面有重要的应用。我们的杂波中成像方法是基于随机介质中波传播的知识,它考虑了统计稳定成像算法的发展,这些算法给出了可靠的结果,与杂波的不确定性无关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liliana Borcea其他文献
Liliana Borcea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liliana Borcea', 18)}}的其他基金
Hyperbolic Inverse Problems in Random Environments
随机环境中的双曲反问题
- 批准号:
1510429 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Problems and Adaptive Algorithms for Imaging in Random Media
随机介质成像的数学问题和自适应算法
- 批准号:
0907746 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Subsurface Imaging and Uncertainty Quantification.
CMG 合作研究:地下成像和不确定性量化。
- 批准号:
0934594 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in Mathematical Sciences - Imaging in Random Media - Spring 2008
NSF/CBMS 数学科学区域会议 - 随机介质成像 - 2008 年春季
- 批准号:
0735368 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Problems in Imaging in Random Media
随机介质成像的数学问题
- 批准号:
0604008 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Problems for Nonlinear Inversion in Intermediate and High Contrast Media
中高对比度介质中非线性反演的数学问题
- 批准号:
9971209 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627407 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical and mathematical analysis to low-dimensional solutions in. mathematical fluid problems
数学流体问题低维解的数值和数学分析
- 批准号:
15340034 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Problems in Low Dimensional Gauge Theories
低维规范理论中的数学问题
- 批准号:
9800955 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Variational Problems on Riemann Surfaces to Low Dimensional Geometry
数学科学:黎曼曲面变分问题在低维几何中的应用
- 批准号:
9626565 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Knot Theory and Low- Dimensional Topology: Applications of Quasipositive Knots and Surfaces
数学科学:结理论和低维拓扑问题:拟正结和曲面的应用
- 批准号:
9504832 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Low-Dimensional Topology
数学科学:低维拓扑问题
- 批准号:
9504438 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Applications of Variational Problems on Riemann Surfaces to Low-Dimensional Geometry
数学科学:黎曼曲面变分问题在低维几何中的应用
- 批准号:
9300001 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Low Dimensional Topologyand Geometry
数学科学:低维拓扑和几何问题
- 批准号:
9196120 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Low Dimensional Manifolds
数学科学:低维流形问题
- 批准号:
9001062 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Low Dimensional Topologyand Geometry
数学科学:低维拓扑和几何问题
- 批准号:
9002923 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant