ALGORITHMS: Collaborative Research: Parallel Reduced Order Modeling with In-Situ Error Mitigation and Performance Optimization
算法:协作研究:具有原位误差缓解和性能优化的并行降阶建模
基本信息
- 批准号:0305532
- 负责人:
- 金额:$ 3.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational fluid dynamics (CFD) has been employed in the simulation of a wide variety of phenomenon in areas such as aerodynamics, meteorology, oceanography, combustion and biomedical flows. However the usefulness of computational fluid dynamics is limited by an inability to perform system simulations in a timely fashion. This is due to the complexity and computational expense of performing high fidelity unsteady CFD simulations. The fundamental goal of this research is the development of a rapid, robust and efficient reduced order simulation technique for accelerating CFD simulation. The reduced order simulation environment must beapplicable to the study of fluid flow problems across a wide spectrum of applications domains. Existing techniques for improving the performance of fluids simulations are: (a) parallelization of the computations and (b) employment of reduced order modeling. Each of these techniques alone have demonstrated reductions of ten-fold to a hundred-fold in simulation time. However, the practical application of proper orthogonal decomposition (POD) has not been realized due to theinability to quantify the accuracy of the reduced order model without a comparison to a full simulation of the same scenario. This work will investigate and demonstrate feasibility of POD simulation methods and the ability to use residual tracking and related methods to validate and correct reduced order simulations. In addition we will demonstrate self-adaptive performance control of a 3D parallel CFD solver.
计算流体动力学(CFD)已被用于空气动力学、气象学、海洋学、燃烧和生物医学流动等领域的各种现象的模拟。然而,计算流体动力学的有用性受到无法及时进行系统模拟的限制。这是由于执行高保真非定常CFD模拟的复杂性和计算费用。本研究的基本目标是开发一种快速、鲁棒和高效的降阶仿真技术,以加速CFD仿真。降阶仿真环境必须适用于流体流动问题的研究,在广泛的应用领域。 现有的用于提高流体模拟性能的技术是:(a)计算的并行化和(B)采用降阶建模。这些技术中的每一种都证明了模拟时间减少了十倍到一百倍。然而,适当的正交分解(POD)的实际应用还没有实现,由于theincreased无法量化的降阶模型的准确性,没有一个完整的模拟相同的情况下进行比较。 这项工作将调查和证明POD仿真方法的可行性和使用残差跟踪和相关方法来验证和校正降阶仿真的能力。此外,我们将展示自适应性能控制的三维并行计算流体动力学求解器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Tomko其他文献
Automatic Target Recognition with Dynamic Reconfiguration
- DOI:
10.1023/a:1008173519198 - 发表时间:
2005-05-01 - 期刊:
- 影响因子:1.800
- 作者:
Jack Jean;Xuejun Liang;Brian Drozd;Karen Tomko;Yan Wang - 通讯作者:
Yan Wang
Creating intelligent cyberinfrastructure for democratizing AI
创建智能网络基础设施以实现人工智能民主化
- DOI:
10.1002/aaai.12166 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Dhabaleswar K. Panda;Vipin Chaudhary;Eric Fosler‐Lussier;R. Machiraju;Amitava Majumdar;Beth Plale;R. Ramnath;P. Sadayappan;Neelima Savardekar;Karen Tomko - 通讯作者:
Karen Tomko
Karen Tomko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Tomko', 18)}}的其他基金
Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
- 批准号:
2320954 - 财政年份:2023
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
CyberTraining: Pilot: An Artificial Intelligence Bootcamp for Cyberinfrastructure Professionals
网络培训:试点:网络基础设施专业人员的人工智能训练营
- 批准号:
2118250 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 3.61万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 3.61万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 3.61万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 3.61万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 3.61万 - 项目类别:
Continuing Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant