Geometrical and Physical Phenomena in Algebraic Topology

代数拓扑中的几何和物理现象

基本信息

项目摘要

DMS-0305853Igor KrizAlgebraic topology is an area which examines properties of shapes not affected by continuous deformation: in a traditional example, a coffee cup made out of modelling clay can be continuously, without gluing or tearing,deformed into the shape of a donut, but not a solid ball (because of the `hole' in the handle). Sophisticated methods using algebra, primarilygroups, were developed to describe and explain such concepts.String theory is an area of theoretical physics which is currently the best candidate for solving the greatest puzzleof modern physics, namely unification of gravity with the otherforces of nature. The fundamental idea of string theory is that very small particles may not be `dots', but $1$-dimensional objects (`strings'). The present project focuses on connections between algebraic topology and string theory. While physicists know about the fact that topology is connected to the phenomenology of strings, the present project explores connections of a new nature. Notably, algebraic topology is needed in making the concepts of string theory mathematically rigorous, which in turn is a necessary step toward possibly using such concepts for scientific prediction. On the other hand, string theorysuggests exciting new methods for algebraic topology, which will also be explored in this project.The investigator will continue to work on using string theory to construct mathematical models for elliptic cohomology. He will also consider extending these methods to finding generalizedcohomology theories related to D-branes and M-theory. In the process,he will work on mathematical theories which will serve asaxiomatic systems for fundamental and extended objects of stringtheory. Many aspects of this project are joint work with Po Hu.
代数拓扑学是一个研究不受连续变形影响的形状属性的领域:在一个传统的例子中,一个由建模粘土制成的咖啡杯可以连续地变形成甜甜圈的形状,而不需要粘合或撕裂,但不是一个实心球(因为手柄上的“洞”)。使用代数(主要是群)的复杂方法被用来描述和解释这些概念。弦理论是理论物理学的一个领域,它目前是解决现代物理学最大难题的最佳候选,即引力与自然界其他力的统一。弦理论的基本思想是非常小的粒子可能不是“点”,而是一元维的物体(“弦”)。本课题的重点是代数拓扑和弦理论之间的联系。虽然物理学家知道拓扑结构与弦的现象学有关,但本项目探索的是一种新性质的联系。值得注意的是,要使弦理论的概念在数学上变得严格,代数拓扑是必要的,而这反过来又可能是将这些概念用于科学预测的必要步骤。另一方面,弦理论为代数拓扑提供了令人兴奋的新方法,这也将在本项目中进行探索。研究者将继续致力于利用弦理论构建椭圆上同调的数学模型。他还将考虑扩展这些方法来寻找与d膜和m理论相关的广义上同调理论。在这个过程中,他将研究数学理论,这些理论将为弦理论的基本和扩展对象提供公理系统。这个项目的许多方面都是与胡珀共同完成的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Kriz其他文献

Some remarks on plectic motivic spaces and spectra
  • DOI:
    10.21136/cmj.2025.0328-24
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Po Hu;Daniel Kriz;Igor Kriz;Petr Somberg
  • 通讯作者:
    Petr Somberg
Relative regular sequences and generalized cohomology of infinite real Grassmannians
  • DOI:
    10.1016/j.topol.2023.108666
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Igor Kriz;Guchuan Li
  • 通讯作者:
    Guchuan Li
On the equivariant motivic filtration of the topological Hochschild homology of polynomial algebras
关于多项式代数的拓扑霍赫希尔德同调的等变动机滤过
  • DOI:
    10.1016/j.aim.2022.108803
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Po Hu;Igor Kriz;Petr Somberg
  • 通讯作者:
    Petr Somberg
Equivariant operations in topological Hochschild homology
拓扑霍赫希尔德同调中的等变运算
  • DOI:
    10.1007/s00209-025-03760-4
  • 发表时间:
    2025-05-23
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Po Hu;Igor Kriz;Petr Somberg;Foling Zou
  • 通讯作者:
    Foling Zou
The universality of equivariant complex bordism
等变复棱镜的普遍性
  • DOI:
    10.1007/s002090100315
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Michael Cole;J. Greenlees;Igor Kriz
  • 通讯作者:
    Igor Kriz

Igor Kriz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Kriz', 18)}}的其他基金

K-theory and related topics
K理论及相关主题
  • 批准号:
    1102614
  • 财政年份:
    2011
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Geometric Phenomena in Homotopy Theory
同伦论中的几何现象
  • 批准号:
    0072300
  • 财政年份:
    2000
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: NSF Young Investigator
数学科学:NSF 青年研究员
  • 批准号:
    9509768
  • 财政年份:
    1995
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Well-Partial-Ordering Theory and Ramsey Theory
数学科学:良好偏序理论和拉姆齐理论
  • 批准号:
    9002155
  • 财政年份:
    1990
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modeling for Understanding Physical Phenomena and Engaging Pre-Service Teachers in Science
用于理解物理现象和让职前教师参与科学的建模
  • 批准号:
    2142641
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Computer Vision-Based Deep Learning Algorithms for Detecting Marine Life and Physical Phenomena from Acoustic Backscatter Time Series
基于计算机视觉的深度学习算法,用于从声学反向散射时间序列中检测海洋生物和物理现象
  • 批准号:
    576751-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Alliance Grants
Nonequilibrium Transport Phenomena in Non-Hermitian Systems: Framework of Defining Physical Operators
非厄米系统中的非平衡输运现象:定义物理算子的框架
  • 批准号:
    21H01005
  • 财政年份:
    2021
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Learning High-Dimensional Non-Linear Maps Arising from Physical Phenomena via Symmetry and Structure-Preserving Deep Neural Networks
通过对称性和结构保持深度神经网络学习物理现象产生的高维非线性图
  • 批准号:
    2012292
  • 财政年份:
    2020
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Elucidation of physical properties of spin current thermoelectric phenomena using magnetic insulator thin films fabricated by wet process
使用湿法制造的磁绝缘体薄膜阐明自旋流热电现象的物理性质
  • 批准号:
    20K05255
  • 财政年份:
    2020
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Environmental Process based on Physical and Chemical Phenomena of Multiphase Nanofluidic Plasma
基于多相纳流等离子体物理化学现象的环境过程开发
  • 批准号:
    19H01887
  • 财政年份:
    2019
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Verification of novel physical phenomena and rapidly dense hydrogen absorption in hydrogen storage metals
验证储氢金属中的新物理现象和快速致密氢吸收
  • 批准号:
    19K03754
  • 财政年份:
    2019
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pressure induced physical phenomena under extreme conditions
极端条件下压力引起的物理现象
  • 批准号:
    19H00648
  • 财政年份:
    2019
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A study for coupling phenomena of proton transfer with physical or chemical properties of molecular solids, based on Kagome-type porous molecular conductors
基于Kagome型多孔分子导体的质子转移与分子固体物理化学性质耦合现象的研究
  • 批准号:
    19K15590
  • 财政年份:
    2019
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Studying Carbon Nanotubes on the Mesoscale: Physical Properties and Emergent Phenomena
研究介观尺度碳纳米管:物理性质和涌现现象
  • 批准号:
    2280508
  • 财政年份:
    2019
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了