Computations and Applications of Periodic Floer Homology and Contact Homology in Symplectic Geometry
辛几何中周期Floer同调和接触同调的计算及应用
基本信息
- 批准号:0305825
- 负责人:
- 金额:$ 8.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2004-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0305825Michael G. SullivanMuch progress has been made in symplectic geometry, and more recently contact geometry, since the discoveryof holomorphic curves in symplectic manifolds.Sullivan plans to continue calculating and applying two sets of invariants based on these curves:the contact homology of Legendrian submanifoldsin contact manifolds and the periodic Floer homology ofRiemann surface diffeomorphisms.The former is a special case of symplectic field theory.Although symplectic field theory is still not rigorouslywell-defined, Sullivan and others havecompleted the foundational analysis for theirversion of contact homology.Sullivan will extend this alternative version of contacthomology to other manifolds.The ultimate goal is to develop a complete obstructionof Legendrian isotopy classes.The latter invariant is conjectured to agree with Seiberg-Witten-Floer homology. This project will develop the foundationsof this theory, as well as broaden the existing set of computations.The investigator also hopes to work on applications of the periodic Floerhomology computations, addressing the problems of existenceand classification of symplectic structures on 4-manifolds.Symplectic and contact geometry explain thephysics of certain dynamical systems, such asthe orbits of planets around the sun, the spin of a top, or the motion of a charged particle in a magnetic field.Such systems obey the least action principal, whichamong other things can mean that their total energyor momentum must be conserved.Many symplectic geometers study holomorphic curves,a reinterpretation of the least action principal,which has linked together several independently well-developedmathematical fields such as complex analysis and differential topology.The study of holomorphic curves has led to other``physical" results, such as a generalization of Heisenberg's uncertainty principal.More recently, these curves are thought to appear inother areas of theoretical physics, like string theory.
DMS-0305825Michael G. Sullivan自从在辛流形中发现全纯曲线以来,辛几何和最近的接触几何都取得了很大的进展。Sullivan计划继续计算和应用基于这些曲线的两组不变量:切触流形中Legendrian子流形的切触同调和Riemann曲面同态的周期Floer同调.前者是辛场论的一个特例.虽然辛场论还没有严格定义,Sullivan等人已经完成了对他们的接触同调的反版本的基础分析。Sullivan将把这种接触同调的替代版本推广到其他流形。最终目标是发展一个完全的Legendrian合痕类。后一个不变量被证明是一个完全的Legendrian合痕类。与Seiberg-Witten-Floer同源性一致。该项目将发展这一理论的基础,并扩大现有的计算集。研究人员还希望致力于周期性Floerhomology计算的应用,解决4-流形上辛结构的存在和分类问题。辛几何和接触几何解释了某些动力系统的物理学,例如行星绕太阳的轨道,陀螺的旋转,或带电粒子在磁场中的运动。这样的系统服从最小作用量原理,这意味着它们的总能量或动量必须守恒。许多辛几何学家研究全纯曲线,这是对最小作用量原理的重新解释,它把几个独立的很好地联系在一起-发展了数学领域,如复分析和微分拓扑学。全纯曲线的研究导致了其他“物理”结果,如海森堡的不确定性原理的推广。最近,这些曲线被认为出现在理论物理学的其他领域,比如弦理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sullivan其他文献
The prognostic utility of delayed-type hypersensitivity skin testing in the evaluation of HIV-infected patients. Military Medical Consortium for Applied Retroviral Research.
迟发型超敏反应皮肤测试在评估 HIV 感染患者中的预后效用。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
D. Birx;J. Brundage;Kristin Larson;R. Engler;Laurie J. Smith;E. Squire;G. Carpenter;Michael Sullivan;J. Rhoads;C. Oster;W. James;G. Lupton;T. Wierzba;D. Burke;R. Redfield - 通讯作者:
R. Redfield
It is not True that Transformers are Inductive Learners: Probing NLI Models with External Negation
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Michael Sullivan - 通讯作者:
Michael Sullivan
The Ancient Na-khi Kingdom of South-west China . 2 Vols. By Joseph F. Rock. Harvard-Yenching Institute. Monograph Series Volume VIII. Harvard University Press. (London: Geoffrey Cumberlege.) 192 s . 6 d . net.
- DOI:
10.1017/s0035869x00102989 - 发表时间:
1949-10 - 期刊:
- 影响因子:0.3
- 作者:
Michael Sullivan - 通讯作者:
Michael Sullivan
Effect of Air and Helium on the Head–Disk Interface During Load–Unload
- DOI:
10.1007/s11249-018-0989-y - 发表时间:
2018-02-05 - 期刊:
- 影响因子:3.300
- 作者:
Tan D. Trinh;Michael Sullivan;Sujit Kirpekar;Frank E. Talke - 通讯作者:
Frank E. Talke
Evaluating the Effectiveness of a Juvenile Drug Court: Comparisons to Traditional Probation
评估青少年毒品法庭的有效性:与传统缓刑的比较
- DOI:
10.1111/jfcj.12081 - 发表时间:
2016 - 期刊:
- 影响因子:0.4
- 作者:
Ginger Gummelt;Michael Sullivan - 通讯作者:
Michael Sullivan
Michael Sullivan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sullivan', 18)}}的其他基金
Open string topology and holomorphic curves
开弦拓扑和全纯曲线
- 批准号:
1007260 - 财政年份:2010
- 资助金额:
$ 8.41万 - 项目类别:
Standard Grant
HCC: Large: Collaborative Research: Delivery of Personalized Reading Strategies for People with Cognitive Impairments in Post-Secondary Settings
HCC:大型:合作研究:为高等教育中有认知障碍的人提供个性化阅读策略
- 批准号:
1012947 - 财政年份:2010
- 资助金额:
$ 8.41万 - 项目类别:
Standard Grant
Computations and Applications of Periodic Floer Homology and Contact Homology in Symplectic Geometry
辛几何中周期Floer同调和接触同调的计算及应用
- 批准号:
0450115 - 财政年份:2004
- 资助金额:
$ 8.41万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowhsip in Plant Biology
植物生物学博士后研究员
- 批准号:
9303614 - 财政年份:1993
- 资助金额:
$ 8.41万 - 项目类别:
Fellowship Award
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
OSCILLATOR: applications of Optical SCatterIng and Light LocAlisation in Turbid Or peRiodic media
振荡器:光学散射和光定位在浑浊或周期性介质中的应用
- 批准号:
RGPIN-2022-04525 - 财政年份:2022
- 资助金额:
$ 8.41万 - 项目类别:
Discovery Grants Program - Individual
Double-layered wide-bandgap photonic materials for efficient nonlinear applications without periodic poling
用于高效非线性应用的双层宽带隙光子材料,无需周期性极化
- 批准号:
2127499 - 财政年份:2021
- 资助金额:
$ 8.41万 - 项目类别:
Standard Grant
Applications of periodic orbits in Hamiltonian dynamics and persistence modules
周期轨道在哈密顿动力学和持久性模块中的应用
- 批准号:
20K22302 - 财政年份:2020
- 资助金额:
$ 8.41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study of mechanism and develop of new control method of formation of laser induced periodic surface structure on ceramics for medical applications
医疗用陶瓷激光诱导周期性表面结构形成机理研究及新控制方法开发
- 批准号:
19K05320 - 财政年份:2019
- 资助金额:
$ 8.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and applications of quantum-chemical methods to treat large cells for periodic materials
量子化学方法处理大细胞周期性材料的开发和应用
- 批准号:
19H02682 - 财政年份:2019
- 资助金额:
$ 8.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Solid-State NMR Across the Periodic Table: Methods and Applications
整个元素周期表的固态核磁共振:方法和应用
- 批准号:
RGPIN-2016-06642 - 财政年份:2019
- 资助金额:
$ 8.41万 - 项目类别:
Discovery Grants Program - Individual
Solid-State NMR Across the Periodic Table: Methods and Applications
整个元素周期表的固态核磁共振:方法和应用
- 批准号:
RGPIN-2016-06642 - 财政年份:2018
- 资助金额:
$ 8.41万 - 项目类别:
Discovery Grants Program - Individual
Vibrations and damping identification of non-linear systems under periodic excitation for nuclear applications
核应用周期性激励下非线性系统的振动和阻尼识别
- 批准号:
490978-2015 - 财政年份:2018
- 资助金额:
$ 8.41万 - 项目类别:
Collaborative Research and Development Grants
Solid-State NMR Across the Periodic Table: Methods and Applications
整个元素周期表的固态核磁共振:方法和应用
- 批准号:
RGPIN-2016-06642 - 财政年份:2017
- 资助金额:
$ 8.41万 - 项目类别:
Discovery Grants Program - Individual
Fast Computation of Birkhoff Average along a Quasi-periodic Orbit and its Applications
准周期轨道Birkhoff平均值的快速计算及其应用
- 批准号:
17K05360 - 财政年份:2017
- 资助金额:
$ 8.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




