Contact homology and String topology
接触同调和弦拓扑
基本信息
- 批准号:0707091
- 负责人:
- 金额:$ 9.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator plans to compute and apply Legendrian contact homology to study Legendrian submanifolds in one-jet spaces. This homology is based on holomorphic curves in symplectic manifolds. In the special case when the Legendrian submanifold is the conormal lift of a smooth submanifold, the Principal Investigator plans to relate the contact homology with an under-construction A-infinity-structure on the open string topology of the smooth submanifold. The next step in the project will be to translate more general structures from open string topology to contact geometry, thereby formulating a relative version of symplectic field theory as a generalization of Legendrian contact homology. Via this conormal construction, the investigator plans to use the homology to study smooth submanifolds, such as knots, in Euclidean or projective space. The Principal Investigator will also apply Legendrian contact homology to study higher homotopy groups of Legendrian submanifolds. The relationship between holomorphic curves and gradient flow trees should facilitate many of the project's computations.Contact geometry makes many appearances in physics, from optics to thermodynamics to classical mechanics. For example, particles obeying the Least Action Principal from mechanics translate into objects in contact geometry (or its closely related field, symplectic geometry) known as holomorphic curves. Some of these connections to physics have been known for centuries; however, only recently has contact geometry benefited from significant advances within the mathematical community. Specifically, studying these holomorphic curves have led to some powerful and sometimes surprising discoveries about contact rigidity and contact dynamics. In the last couple of years, an active area of research has evolved around applying these holomorphic curves towards studying unresolved problems in three and four-dimensional topology. As stated, these problems in low-dimensional topology seem to have nothing to do with holomorphic curves. Yet, the techniques from recent results have firmly established a connection. The Principal Investigator plans to further study the effectiveness of holomorphic curves, with an emphasis on connecting it to the theory of topological knots in three dimensions.
首席研究员计划计算并应用勒让接触同调来研究单射流空间中的勒让子流形。这种同源性基于辛流形中的全纯曲线。在特殊情况下,当勒让德子流形是光滑子流形的共法升力时,首席研究员计划将接触同源性与光滑子流形的开弦拓扑上正在构建的 A 无穷大结构联系起来。该项目的下一步是将更一般的结构从开弦拓扑转化为接触几何,从而制定辛场论的相对版本作为勒让德接触同调的推广。通过这种共正规结构,研究人员计划利用同源性来研究欧几里德空间或射影空间中的光滑子流形,例如结。首席研究员还将应用勒让接触同调来研究勒让子流形的更高同伦群。全纯曲线和梯度流树之间的关系应该有助于该项目的许多计算。接触几何在物理学中多次出现,从光学到热力学再到经典力学。例如,遵守力学中最小作用原理的粒子转换为接触几何(或其密切相关的领域,辛几何)中的对象,称为全纯曲线。其中一些与物理学的联系已经为人所知几个世纪了。然而,直到最近,接触几何才从数学界的重大进步中受益。具体来说,研究这些全纯曲线已经在接触刚度和接触动力学方面取得了一些强有力的、有时令人惊讶的发现。在过去的几年中,围绕应用这些全纯曲线来研究三维和四维拓扑中未解决的问题,一个活跃的研究领域已经发展起来。如前所述,低维拓扑中的这些问题似乎与全纯曲线无关。然而,从最近的结果来看,技术已经牢固地建立了联系。首席研究员计划进一步研究全纯曲线的有效性,重点是将其与三维拓扑结理论联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sullivan其他文献
The prognostic utility of delayed-type hypersensitivity skin testing in the evaluation of HIV-infected patients. Military Medical Consortium for Applied Retroviral Research.
迟发型超敏反应皮肤测试在评估 HIV 感染患者中的预后效用。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
D. Birx;J. Brundage;Kristin Larson;R. Engler;Laurie J. Smith;E. Squire;G. Carpenter;Michael Sullivan;J. Rhoads;C. Oster;W. James;G. Lupton;T. Wierzba;D. Burke;R. Redfield - 通讯作者:
R. Redfield
It is not True that Transformers are Inductive Learners: Probing NLI Models with External Negation
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Michael Sullivan - 通讯作者:
Michael Sullivan
The Ancient Na-khi Kingdom of South-west China . 2 Vols. By Joseph F. Rock. Harvard-Yenching Institute. Monograph Series Volume VIII. Harvard University Press. (London: Geoffrey Cumberlege.) 192 s . 6 d . net.
- DOI:
10.1017/s0035869x00102989 - 发表时间:
1949-10 - 期刊:
- 影响因子:0.3
- 作者:
Michael Sullivan - 通讯作者:
Michael Sullivan
Effect of Air and Helium on the Head–Disk Interface During Load–Unload
- DOI:
10.1007/s11249-018-0989-y - 发表时间:
2018-02-05 - 期刊:
- 影响因子:3.300
- 作者:
Tan D. Trinh;Michael Sullivan;Sujit Kirpekar;Frank E. Talke - 通讯作者:
Frank E. Talke
Evaluating the Effectiveness of a Juvenile Drug Court: Comparisons to Traditional Probation
评估青少年毒品法庭的有效性:与传统缓刑的比较
- DOI:
10.1111/jfcj.12081 - 发表时间:
2016 - 期刊:
- 影响因子:0.4
- 作者:
Ginger Gummelt;Michael Sullivan - 通讯作者:
Michael Sullivan
Michael Sullivan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sullivan', 18)}}的其他基金
Open string topology and holomorphic curves
开弦拓扑和全纯曲线
- 批准号:
1007260 - 财政年份:2010
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
HCC: Large: Collaborative Research: Delivery of Personalized Reading Strategies for People with Cognitive Impairments in Post-Secondary Settings
HCC:大型:合作研究:为高等教育中有认知障碍的人提供个性化阅读策略
- 批准号:
1012947 - 财政年份:2010
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Computations and Applications of Periodic Floer Homology and Contact Homology in Symplectic Geometry
辛几何中周期Floer同调和接触同调的计算及应用
- 批准号:
0450115 - 财政年份:2004
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Computations and Applications of Periodic Floer Homology and Contact Homology in Symplectic Geometry
辛几何中周期Floer同调和接触同调的计算及应用
- 批准号:
0305825 - 财政年份:2003
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowhsip in Plant Biology
植物生物学博士后研究员
- 批准号:
9303614 - 财政年份:1993
- 资助金额:
$ 9.71万 - 项目类别:
Fellowship Award
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role and Theranostics Potential of Enolase in Prostate Cancer Health Disparities
烯醇化酶在前列腺癌健康差异中的作用和治疗潜力
- 批准号:
10649164 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
- 批准号:
10604872 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Targeting SHP-1 through a newfound metabolite-regulated cysteine activation site
通过新发现的代谢物调节的半胱氨酸激活位点靶向 SHP-1
- 批准号:
10802649 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
- 批准号:
10659783 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Characterization of disulfide modified diabetogenic neoepitopes
二硫键修饰的糖尿病新表位的表征
- 批准号:
10720644 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:














{{item.name}}会员




