Statistical Mining of Massive Data, Data Depth and Aviation Risk Management
海量数据统计挖掘、数据深度与航空风险管理
基本信息
- 批准号:0306008
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractPI: Regina Liu, Proposal Number: DMS-0306008Title: Statistical Mining of Massive Data, Data Depth and Aviation Risk ManagementThis project aims to develop a systematic data mining procedure for exploring some large non-standard data sets by automatic means, with the purpose of discovering meaningful patterns and useful features. The procedure includes four particular research areas: text analysis, risk analysis, data depth and multivariate nonparametric analysis. The PI proposes to introduce and investigate several new data extracting and tracking methodologies. She plans to use two aviation safety report repositories ("Program Tracking Report Subsystem" from the FAA and "Aviation Accident Statistics" from NTSB) to illustrate problem statements as well as applications of the proposed research to aviation risk management. The data mining procedures and methods for constructing and tracking performance measures or risk indicators developed in this project can be a critical component of any effective decision-support systems. Also, included in this project are: a research plan for establishing a general theory of multivariate spacings based on data depth, and some new nonparametric statistical inference methods using the concept of depth-ranking.The recent advances in computing and data acquisition technologies have made the collection of massive amounts of data a routine practice in many fields. Besides the voluminous size, the types of data are also often less traditional. They may be textual, image, or unstructured high dimensional data. Scientists face increasingly the task of analyzing such massive non-standard data sets. Moreover, with the low cost of implementing automated data collection systems, many data collection systems are often designed to accumulate maximum amounts of data without clearly defined missions. Consequently, the data analysis required of statisticians often includes the new challenge of mining a sea of unstructured data. The goal of this project is to develop a comprehensive statistical mining scheme that should have a broad applicability to many fields. The investigator plans to use some aviation safety report repositories from the NTSB (National Transportation Safety Board) to illustrate problem statements as well as applications of the proposed research to aviation risk management. The data mining procedures and methods for constructing and tracking performance measures or risk indicators developed in this project can be a critical component of any effective decision-support systems.
摘要PI:Regina Liu,提案编号:DMS-0306008题目:海量数据的统计挖掘、数据深度和航空风险管理本项目旨在开发一个系统的数据挖掘程序,用于通过自动手段探索一些大型非标准数据集,目的是发现有意义的模式和有用的特征。该程序包括四个特定的研究领域:文本分析、风险分析、数据深度和多元非参数分析。PI建议引入和研究几种新的数据提取和跟踪方法。她计划使用两个航空安全报告库(“程序跟踪报告子系统”从FAA和“航空事故统计”从NTSB),以说明问题的陈述,以及拟议的研究应用到航空风险管理。本项目中开发的用于构建和跟踪业绩计量或风险指标的数据挖掘程序和方法可以成为任何有效决策支持系统的关键组成部分。同时,本项目还包括:建立基于数据深度的多元空间一般理论的研究计划,以及利用深度排序概念的一些新的非参数统计推断方法。近年来,计算和数据采集技术的进步使得大量数据的收集在许多领域成为一种常规做法。除了庞大的规模,数据类型也往往不那么传统。它们可以是文本、图像或非结构化的高维数据。科学家们越来越多地面临着分析如此庞大的非标准数据集的任务。此外,由于实施自动化数据收集系统的成本较低,许多数据收集系统往往被设计成在没有明确规定任务的情况下积累最大数量的数据。因此,统计人员所需的数据分析通常包括挖掘大量非结构化数据的新挑战。该项目的目标是开发一个全面的统计挖掘计划,应该有广泛的适用性,许多领域。研究人员计划使用NTSB(国家运输安全委员会)的一些航空安全报告库来说明问题陈述以及拟议研究在航空风险管理中的应用。本项目中开发的用于构建和跟踪业绩计量或风险指标的数据挖掘程序和方法可以成为任何有效决策支持系统的关键组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Regina Liu其他文献
Asset Pricing: -Discrete Time Approach-
资产定价:-离散时间法-
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
T. Kariya;Regina Liu;Loren Parker - 通讯作者:
Loren Parker
Epidermal spongiotic Langerhans cell collections, but not eosinophils, are a clue to the diagnosis of allergic contact dermatitis: A series of 170 clinically- and patch test-confirmed cases
表皮海绵形成的朗格汉斯细胞聚集物(而非嗜酸性粒细胞)是诊断过敏性接触性皮炎的线索:一系列 170 例经临床和斑贴试验证实的病例
- DOI:
10.1016/j.jaad.2024.11.062 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:11.800
- 作者:
Peggy A. Wu;Jiejun Wu;Regina Liu;Sydney Sullivan;Olivia Keller;Leah Caro-Chang;Yuden Pemba;Maxwell A. Fung - 通讯作者:
Maxwell A. Fung
Alopecia areata in a patient with WNT10A heterozygous ectodermal dysplasia.
WNT10A 杂合外胚层发育不良患者的斑秃。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Regina Liu;A. Vandiver;Nicole Harter;M. Hogeling - 通讯作者:
M. Hogeling
Regina Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Regina Liu', 18)}}的其他基金
Nonparametric Inference and Prediction for Complex Data by Data Depth, Confidence Distribution and Monte Carlo Method
通过数据深度、置信分布和蒙特卡罗方法对复杂数据进行非参数推理和预测
- 批准号:
1812048 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Data Depth: Multivariate Spacings and DD-Classifiers for Nonparametric Multivariate Classification
数据深度:用于非参数多元分类的多元间距和 DD 分类器
- 批准号:
1007683 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
From Centrality To Extremity in Multivariate Statistics: Data Depth, Extreme Value Theory and Applications
多元统计中从中心到极端:数据深度、极值理论与应用
- 批准号:
0707053 - 财政年份:2007
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research "Tracking Statistics and Inference for Indirect Measurements"
合作研究“间接测量的跟踪统计和推断”
- 批准号:
0405833 - 财政年份:2004
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Faculty Awards for Women: Mathematical Sciences: Data Analysis and Resampling Techniques in Statistics
女性教师奖:数学科学:统计学中的数据分析和重采样技术
- 批准号:
9022126 - 财政年份:1991
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
相似国自然基金
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
- 批准号:21242003
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
- 批准号:
10693339 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Engineering photostable fluorescent proteins and biosensors using transcriptomic mining and massive-throughput single-cell screening
使用转录组挖掘和大通量单细胞筛选来工程光稳定荧光蛋白和生物传感器
- 批准号:
10610472 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
- 批准号:
10527721 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
ARCHS4: Massive Mining of Publicly Available RNA Sequencing Data
ARCHS4:大规模挖掘公开的 RNA 测序数据
- 批准号:
10814654 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
III: Small: Exploiting the Massive User Generated Utterances for Intent Mining under Scarce Annotations
III:小:利用大量用户生成的话语进行稀缺注释下的意图挖掘
- 批准号:
1909323 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Origin of magnetite from the Volcanogenic Massive Sulfide deposits of the Matagami Mining Camp, Abitibi, Canada: implications for exploration
加拿大阿比蒂比马塔加米矿场火山成因的块状硫化物矿床中磁铁矿的起源:对勘探的影响
- 批准号:
511854-2017 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Engage Grants Program
Gold and Silver in the Massive Sulfide Ores of the Northern Bathurst Mining Camp
北巴瑟斯特矿营大量硫化物矿石中的金银
- 批准号:
510235-2017 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
III: Small: Collaborative Research: Adaptive Integration of Textual and Geospatial Information for Mining Massive Map Collections
III:小型:协作研究:文本和地理空间信息的自适应集成以挖掘海量地图集
- 批准号:
1526431 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: RUI: Adaptive Integration of Textual and Geospatial Information for Mining Massive Map Collections
III:小型:协作研究:RUI:自适应集成文本和地理空间信息以挖掘海量地图集
- 批准号:
1526350 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
III-Core:Small: MoveMine: Mining Sophisticated Patterns and Actionable Knowledge from Massive Moving Object Data
III-核心:小:MoveMine:从海量移动对象数据中挖掘复杂的模式和可操作的知识
- 批准号:
1017362 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant