Data Depth: Multivariate Spacings and DD-Classifiers for Nonparametric Multivariate Classification

数据深度:用于非参数多元分类的多元间距和 DD 分类器

基本信息

  • 批准号:
    1007683
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Data depth has provided a systematic nonparametric multivariate framework and given rise to a powerful multivariate analysis tool set. However, its full potential in spacings and classification is yet to be fully explored. Motivated by several real applications, the investigator plans to: 1) develop nonparametric classification procedures based on DD (Depth-vs-Depth) plots. These procedures are referred to as DD-classifiers, and they are to be compared with the so-called support vector machine procedures; 2) use the multivariate spacings derived from data depth to: (2a) construct tolerance envelopes for functional or time series data and (2b) develop a class of multivariate goodness-of-fit tests.Classification is is an important task in all scientific domains, such as identifying new species in archaeological investigations or distinguishing disease types in medical studies. Applying the notion of data depth, the investigator proposes to develop effective classification procedures, which can automatically yield the best separating power for classification purposes and compete well with the highly calibrated existing classification procedures. The classification outcomes can be easily visualized in a two-dimensional plot regardless of the dimension of the data. The investigator also introduces multivariate spacings for the analysis of multi-dimensional data. These multivariate spacings should have a wide range of utilities. In particular, the investigator applies these spacings to develop both tolerance envelopes for tracking multivariate data and a class of multivariate goodness-of-fit tests. She plans to apply the proposed tolerance envelope to the monitoring of aircraft landing patterns and to ensure landing safety. She also plans to apply the proposed classifications to disease identification. These applications are motivated by the investigator's ongoing collaborative research projects with the Federal Aviation Administration and the Department of Psychiatry of the Robert Wood Johnson Medical School. The proposed projects involve real databases and are ideally suited for engaging students and postdocs.
数据深度提供了一个系统的非参数多变量框架,并产生了强大的多变量分析工具集。然而,它在间距和分类方面的全部潜力尚未得到充分探索。在几个实际应用的激励下,研究者计划:1)开发基于DD (Depth-vs-Depth)图的非参数分类程序。这些程序被称为dd分类器,它们将与所谓的支持向量机程序进行比较;2)使用从数据深度得出的多变量间距:(2a)为功能或时间序列数据构建公差包络,(2b)开发一类多变量拟合优度检验。分类在所有科学领域都是一项重要的任务,例如在考古调查中识别新物种或在医学研究中区分疾病类型。运用数据深度的概念,研究者提出开发有效的分类程序,该程序可以自动产生用于分类目的的最佳分离力,并与高度校准的现有分类程序竞争。无论数据的维度如何,分类结果都可以很容易地在二维图中可视化。研究者还介绍了多维数据分析的多元间距。这些多变量间距应该具有广泛的实用程序。特别是,研究者应用这些间距来开发跟踪多变量数据和一类多变量拟合优度测试的容差信封。她计划将拟议的容许范围应用于飞机着陆模式的监测,以确保着陆安全。她还计划将提出的分类应用于疾病鉴定。这些应用程序的动机是研究者正在进行的与联邦航空管理局和罗伯特伍德约翰逊医学院精神病学部门的合作研究项目。提议的项目涉及真实的数据库,非常适合学生和博士后参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Regina Liu其他文献

Asset Pricing: -Discrete Time Approach-
资产定价:-离散时间法-
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Kariya;Regina Liu;Loren Parker
  • 通讯作者:
    Loren Parker
Epidermal spongiotic Langerhans cell collections, but not eosinophils, are a clue to the diagnosis of allergic contact dermatitis: A series of 170 clinically- and patch test-confirmed cases
表皮海绵形成的朗格汉斯细胞聚集物(而非嗜酸性粒细胞)是诊断过敏性接触性皮炎的线索:一系列 170 例经临床和斑贴试验证实的病例
  • DOI:
    10.1016/j.jaad.2024.11.062
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Peggy A. Wu;Jiejun Wu;Regina Liu;Sydney Sullivan;Olivia Keller;Leah Caro-Chang;Yuden Pemba;Maxwell A. Fung
  • 通讯作者:
    Maxwell A. Fung
Alopecia areata in a patient with WNT10A heterozygous ectodermal dysplasia.
WNT10A 杂合外胚层发育不良患者的斑秃。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Regina Liu;A. Vandiver;Nicole Harter;M. Hogeling
  • 通讯作者:
    M. Hogeling

Regina Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Regina Liu', 18)}}的其他基金

Nonparametric Inference and Prediction for Complex Data by Data Depth, Confidence Distribution and Monte Carlo Method
通过数据深度、置信分布和蒙特卡罗方法对复杂数据进行非参数推理和预测
  • 批准号:
    1812048
  • 财政年份:
    2018
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
From Centrality To Extremity in Multivariate Statistics: Data Depth, Extreme Value Theory and Applications
多元统计中从中心到极端:数据深度、极值理论与应用
  • 批准号:
    0707053
  • 财政年份:
    2007
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Collaborative Research "Tracking Statistics and Inference for Indirect Measurements"
合作研究“间接测量的跟踪统计和推断”
  • 批准号:
    0405833
  • 财政年份:
    2004
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Scalable Analysis of Similarity Data
相似性数据的可扩展分析
  • 批准号:
    0312275
  • 财政年份:
    2003
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Statistical Mining of Massive Data, Data Depth and Aviation Risk Management
海量数据统计挖掘、数据深度与航空风险管理
  • 批准号:
    0306008
  • 财政年份:
    2003
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Faculty Awards for Women: Mathematical Sciences: Data Analysis and Resampling Techniques in Statistics
女性教师奖:数学科学:统计学中的数据分析和重采样技术
  • 批准号:
    9022126
  • 财政年份:
    1991
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Neural mechanism of the luminance contrast effect on perceived depth from disparity
亮度对比度对视差感知深度影响的神经机制
  • 批准号:
    24K16880
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
In-depth Investigation of Lithium Dendrite Formation Processes
深入研究锂枝晶形成过程
  • 批准号:
    DE240101090
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Early Career Researcher Award
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
  • 批准号:
    2418485
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
実レンズの非理想性補正に基づく高精度Depth from Defocus法の実現
基于真实镜头非理想校正的散焦法高精度景深实现
  • 批准号:
    24K15008
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In depth characterisation of the gamma delta T cell immune synapse
γδT 细胞免疫突触的深入表征
  • 批准号:
    DP230102073
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Projects
Research on the Structural Reinforcement to Optimize the Axial Tension of Rigid Riser in Water Depth Below 4,000m
4000m以下水深刚性立管轴拉力优化的结构加固研究
  • 批准号:
    23K04265
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Advanced Sample Preparation, Separation and Multiplexed Analysis for In-Depth Proteome Profiling of >1000 Single Cells Per Day
先进的样品制备、分离和多重分析,每天对超过 1000 个单细胞进行深入的蛋白质组分析
  • 批准号:
    10642310
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了