III: Small: Exploiting the Massive User Generated Utterances for Intent Mining under Scarce Annotations
III:小:利用大量用户生成的话语进行稀缺注释下的意图挖掘
基本信息
- 批准号:1909323
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the advance of artificial intelligence and machine learning technology, users interact with computational devices through spoken language to search information or accomplish tasks, as is evident by voice-based personal assistance products in smart home, automobile, education, healthcare, retail, and telecommunications environments. This project studies user intent mining that aims to understand the underlying goals or purposes from user-generated utterances. For example, by asking the personal assistance system "should I bring an umbrella tomorrow?", a user reveals the intention of getting weather information. Intent mining has been an elusive goal for information search due to diverse, implicit expressions in questions, and it is even harder for task accomplishment in conversational systems. For example, by giving a voice command "book a restaurant near me", the system shall learn to follow up with date or dietary preferences questions and refine the task goal, i.e., the intent, according to the user response. This project explores new computational techniques to understand user-generated utterances while addressing the scarcity of annotation data available for intent mining. The research findings and insights are expected to lead to better natural language understanding, dialogue management with reduced requirements on human annotation efforts. The proposed research will be applicable to the design of new question/conservation understanding systems that improve service, user satisfaction with reduced annotation cost. The research projects will engage graduate and undergraduate students to participate in. Research findings will be incorporated into course curriculum. The proposed project provides major advancements to the foundation of intent mining from user-generated utterances, by formulating four fundamental intent mining tasks that cover the discovery, annotation, unsupervised learning and sequential modeling phase in mining user intentions. The research tasks are proposed with a specific and consistent focus on dealing with the labeling scarcity issue as it is time-consuming and labor-intensive to obtain a large scale labeled data where user intents are accurately defined and correctly annotated from diverse and noise utterances. The project will include developments of principles, models and algorithms for intent discovery, joint intent and slot annotation, unsupervised intent learning and intent evolvement modeling. Abundant learning schemas such as zero-shot learning, reinforcement learning, generative modeling, and multi-modal learning will be introduced for the ever-intensive scenario where there is not enough annotation data for current learning rationales to succeed out-of-the-box. The research team plans to share results, including datasets and software, with the research community to facilitate future studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人工智能和机器学习技术的进步,用户通过口语与计算设备交互以搜索信息或完成任务,智能家居、汽车、教育、医疗保健、零售和电信环境中的基于语音的个人辅助产品就是明证。这个项目研究用户意图挖掘,旨在从用户生成的话语中理解潜在的目标或目的。例如,用户通过向个人辅助系统询问“明天我应该带把伞吗?”,就透露了获取天气信息的意图。意图挖掘一直是信息搜索的一个难以实现的目标,因为问题中存在着各种各样的隐含表达,而在对话系统中完成任务则更加困难。例如,通过发出语音命令“预订我附近的一家餐厅”,系统应该学会根据用户的反应跟进日期或饮食偏好问题,并细化任务目标,即意图。该项目探索了新的计算技术来理解用户生成的话语,同时解决了可用于意图挖掘的注释数据的稀缺问题。研究结果和见解预计将导致更好的自然语言理解和对话管理,并减少对人工注释工作的要求。所提出的研究将适用于设计新的问题/保护理解系统,从而在降低注释成本的同时提高服务和用户满意度。研究项目将邀请研究生和本科生参与。研究成果将被纳入课程课程。该项目提出了四个基本的意图挖掘任务,涵盖了挖掘用户意图的发现、标注、无监督学习和序列建模阶段,从而为从用户生成的话语中进行意图挖掘奠定了基础。由于获取大规模的标注数据既耗时又费力,用户意图被准确地定义并从不同的噪声话语中正确地标注出来,因此提出了具体而一致的研究任务来处理标注稀缺性问题。该项目将包括意图发现、联合意图和槽标注、无监督意图学习和意图演化建模的原理、模型和算法的开发。对于没有足够的注释数据来实现当前学习原理的日益密集的场景,将引入丰富的学习模式,如零机会学习、强化学习、生成性建模和多模式学习。研究团队计划与研究社区共享结果,包括数据集和软件,以促进未来的研究。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning
- DOI:10.18653/v1/2021.emnlp-main.144
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Jianguo Zhang;Trung Bui;Seunghyun Yoon;Xiang Chen;Zhiwei Liu;Congying Xia;Quan Hung Tran;Walter Chang;P. Yu
- 通讯作者:Jianguo Zhang;Trung Bui;Seunghyun Yoon;Xiang Chen;Zhiwei Liu;Congying Xia;Quan Hung Tran;Walter Chang;P. Yu
Dense Hierarchical Retrieval for Open-domain Question Answering
开放域问答的密集层次检索
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liu, Y.;Hashimoto, K.;Zhou, Y.;Yavuz, S.;Xiong, C.;Yu, P.S.
- 通讯作者:Yu, P.S.
SelfLRE: Self-refining Representation Learning for Low-resource Relation Extraction
- DOI:10.1145/3539618.3592058
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Xuming Hu;Junzhe Chen;Shiao Meng;Lijie Wen;Philip S. Yu
- 通讯作者:Xuming Hu;Junzhe Chen;Shiao Meng;Lijie Wen;Philip S. Yu
Generative Question Refinement with Deep Reinforcement Learning in Retrieval-based QA System
- DOI:10.1145/3357384.3358046
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Ye Liu;Chenwei Zhang;Xiaohui Yan;Yi Chang;Philip S. Yu
- 通讯作者:Ye Liu;Chenwei Zhang;Xiaohui Yan;Yi Chang;Philip S. Yu
Domain-Invariant Feature Progressive Distillation with Adversarial Adaptive Augmentation for Low-Resource Cross-Domain NER
- DOI:10.1145/3570502
- 发表时间:2022-12
- 期刊:
- 影响因子:2
- 作者:Tao Zhang;Congying Xia;Zhiwei Liu;Shu Zhao;Hao Peng;Philip S. Yu
- 通讯作者:Tao Zhang;Congying Xia;Zhiwei Liu;Shu Zhao;Hao Peng;Philip S. Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Yu其他文献
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks
异构网络中多方面信息的深度协同过滤
- DOI:
10.1109/tkde.2019.2941938 - 发表时间:
2019-09 - 期刊:
- 影响因子:8.9
- 作者:
Chuan Shi;Xiaotian Han;Song Li;Xiao Wang;Senzhang Wang;Junping Du;Philip Yu - 通讯作者:
Philip Yu
OS105 - Training, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography
OS105 - 用于在计算机断层扫描上准确诊断肝细胞癌的多尺度三维深度学习算法的训练、验证和测试
- DOI:
10.1016/s0168-8278(22)00551-7 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Wai-Kay Seto;Keith Wan Hang Chiu;Wenming Cao;Gilbert Lui;Jian Zhou;Ho Ming Cheng;Juan Wu;Xinping Shen;Lung Yi Loey Mak;Jinhua Huang;Wai Keung Li;Man-Fung Yuen;Philip Yu - 通讯作者:
Philip Yu
Efficient Reverse Nearest Neighbor Search in Trajectory-driven Services
轨迹驱动服务中的高效反向最近邻搜索
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiao Pan;Shili Nie;Haibo Hu;Philip Yu;Jingfeng Guo - 通讯作者:
Jingfeng Guo
WED-154 Artificial intelligence foundation models for histological diagnosis of hepatocellular carcinoma based on 121,344 digitalized whole slide image patches
WED - 154基于121344个数字化全切片图像块的肝细胞癌组织学诊断人工智能基础模型
- DOI:
10.1016/s0168-8278(25)01224-3 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Yan Miao;Philip Yu;Tak-Siu Wong;Regina Cheuk Lam Lo;Ho Ming Cheng;Lequan Yu;Lung-Yi Mak;Man-Fung Yuen;Wai-Kay Seto - 通讯作者:
Wai-Kay Seto
Adversarial Representation Mechanism Learning for Network Embedding
网络嵌入的对抗性表示机制学习
- DOI:
10.1109/tkde.2021.3103193 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Dongxiao He;Tao Wang;Lu Zhai;Di Jin;Liang Yang;Yuxiao Huang;Zhiyong Feng;Philip Yu - 通讯作者:
Philip Yu
Philip Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Yu', 18)}}的其他基金
III: Medium: Collaborative Research: Self-Supervised Recommender System Learning with Application Specific Adaption
III:媒介:协作研究:具有特定应用适应性的自监督推荐系统学习
- 批准号:
2106758 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Learning Dynamic and Robust Defenses Against Co-Adaptive Spammers
SaTC:核心:小型:协作:学习针对自适应垃圾邮件发送者的动态且强大的防御
- 批准号:
1930941 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: An Extensible Heterogeneous Network Embedding Framework with Application Specific Adaptation
III:媒介:协作研究:具有特定应用适应能力的可扩展异构网络嵌入框架
- 批准号:
1763325 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Fusion of Heterogeneous Networks for Synergistic Knowledge Discovery
III:小:异构网络融合以实现协同知识发现
- 批准号:
1526499 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TC: Small: Robust Anonymization on Social Networks
TC:小:社交网络上强大的匿名化
- 批准号:
1115234 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: G-SESAME Cloud: A Dynamically Scalable Collaboration Community for Biological Knowledge Discovery
协作研究:G-SESAME Cloud:用于生物知识发现的动态可扩展协作社区
- 批准号:
0960443 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III:Small:Privacy Preserving Data Publishing: A Second Look on Group based Anonymization
III:小:隐私保护数据发布:基于群体的匿名化的再审视
- 批准号:
0914934 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SaTC: CORE: Small: Building Resilience into LEO Satellite Networks by Exploiting Network Layer Characteristics
SaTC:核心:小型:通过利用网络层特征构建 LEO 卫星网络的弹性
- 批准号:
2308761 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Exploiting Stimulus-response Correlation for Wireless Hidden Device Localization
SaTC:核心:小:利用刺激响应相关性进行无线隐藏设备定位
- 批准号:
2155181 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155097 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Exploiting new drug targets in extremely resistant M.abscessus by using small molecule Lipid II binders
使用小分子脂质 II 结合剂在极其耐药的脓肿分枝杆菌中开发新的药物靶点
- 批准号:
10183396 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Exploiting new drug targets in extremely resistant M.abscessus by using small molecule Lipid II binders
使用小分子脂质 II 结合剂在极其耐药的脓肿分枝杆菌中开发新的药物靶点
- 批准号:
10378085 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
III: Small: Collaborative Research: Algorithms, systems, and theories for exploiting data dependencies in crowdsourcing
III:小型:协作研究:在众包中利用数据依赖性的算法、系统和理论
- 批准号:
2007941 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Agents Provocateur: Exploiting bacterial biofilm stimulation to identify bioactive small molecules
Agents Provocateur:利用细菌生物膜刺激来识别生物活性小分子
- 批准号:
RGPIN-2016-06521 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Understanding and Exploiting Software Defined Networks (SDN) in High Performance Computing (HPC) Environments
SHF:小型:理解和利用高性能计算 (HPC) 环境中的软件定义网络 (SDN)
- 批准号:
2007827 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Exploiting genetic vulnerabilities to improve outcomes in small cell carcinoma of the ovary
利用遗传弱点改善小细胞卵巢癌的治疗结果
- 批准号:
420635 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Operating Grants














{{item.name}}会员




