Statistical Analysis of Networked Point Processes

联网点过程统计分析

基本信息

  • 批准号:
    0306202
  • 负责人:
  • 金额:
    $ 25.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Motivated by problems arising in the analysis of neural data, the investigator and colleagues will develop new statistical methods for the analysis of functional data, and in particular to study multiple replications of point processes. The main question of interest is understanding the structure of the rate functions, and understanding how the rate functions relate to covariates. Particular attention will be given to the time distortion, or latency problem, where differences in the time scale among different replications are considered. Such time-scale differences are of particular interest in neural data applications, as they represent different speeds at which subjects complete tasks in response to a stimulus. The research will develop new methods, based on tools from extreme value theory, for functional regression and analysis of variance problems.Nerve cells, or neurons, are fundamental to communication between the brain and other parts of the body. When a subject receives an external stimulus, for example, a visual stimulus may consist of showing an object to the subject, nerve cells react and transmit information about the stimulus to the brain through a series of electrical pulses. The proposed research will advance understanding of this communication process by developing new methods for analyzing the neural signals. The statistical methods developed during the proposed research will study how the response to a stimulus differs among different subjects, and how these differences relate to factors such as species, age and gender. The proposed research has applications in product design. As an example, a warning device such as a traffic signal may be required to generate a stimulus to warn users of potential hazard. Understanding the response of different individuals to a given stimulus, and the different responses to different stimuli, will lead to improved products and safety for a wider variety of users.
受神经数据分析中出现的问题的启发,研究人员及其同事将开发新的统计方法来分析功能数据,特别是研究点过程的多次重复。兴趣的主要问题是理解利率函数的结构,以及利率函数与协变量的关系。将特别注意时间失真或延迟问题,其中考虑不同复制之间的时间尺度差异。这种时间尺度差异在神经数据应用中特别感兴趣,因为它们代表受试者响应刺激完成任务的不同速度。这项研究将开发新的方法,基于极值理论的工具,用于函数回归和方差分析问题。神经细胞,或神经元,是大脑和身体其他部位之间交流的基础。当受试者接收到外部刺激时,例如,视觉刺激可以包括向受试者显示物体,神经细胞做出反应并通过一系列电脉冲将关于刺激的信息传输到大脑。这项研究将通过开发分析神经信号的新方法来促进对这种通信过程的理解。在拟议的研究中开发的统计方法将研究不同受试者对刺激的反应如何不同,以及这些差异如何与物种,年龄和性别等因素相关。所提出的研究在产品设计中具有应用价值。作为示例,可能需要诸如交通信号的警告设备来生成刺激以警告用户潜在的危险。了解不同个体对给定刺激的反应,以及对不同刺激的不同反应,将为更广泛的用户带来更好的产品和安全性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiayang Sun其他文献

Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) of photodynamic therapy (PDT) outcome and associated changes in the blood-brain barrier following Pc 4-PDT of glioma in an athymic nude rat model
无胸腺裸鼠模型中胶质瘤光动力治疗 (PDT) 结果以及 Pc 4-PDT 后血脑屏障的相关变化的动态对比增强磁共振成像 (DCE-MRI)
  • DOI:
    10.1117/12.909280
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Belle;A. Anka;N. Cross;Paul Thompson;Eric J. Mott;Rahul Sharma;Kayla E. Gray;Ruozhen Zhang;Yueshuo Xu;Jiayang Sun;C. Flask;N. Oleinick;D. Dean
  • 通讯作者:
    D. Dean
Subsampling Winner Algorithm for Feature Selection in Large Regression Data
用于大型回归数据中特征选择的子采样获胜者算法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiying Fan;Jiayang Sun
  • 通讯作者:
    Jiayang Sun
Design and Implementation of a Comprehensive Web-based Survey for Ovarian Cancer Survivorship with an Analysis of Prediagnosis Symptoms via Text Mining
设计和实施基于网络的卵巢癌生存综合调查,并通过文本挖掘分析诊断前症状
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jiayang Sun;K. Bogie;Joseph Teagno;Yu;Rebecca R. Carter;Licong Cui;Guoqiang Zhang
  • 通讯作者:
    Guoqiang Zhang
TARGETED DISCOVERY PROTEOMICS IN MALIGNANT LEFT VENTRICULAR HYPERTROPHY
  • DOI:
    10.1016/s0735-1097(20)31304-8
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Hooman Bakhshi;Guoqing Diao;Stephen Seliger;Jiayang Sun;Jarett D. Berry;Ian Neeland;James de Lemos;Christopher R. DeFilippi
  • 通讯作者:
    Christopher R. DeFilippi
PO-02-037 strongNOVEL BIOMARKERS PREDICT RECURRENCE OF ATRIAL FIBRILLATION AFTER CATHETER ABLATION/strong
PO-02-037 强有力的新型生物标志物可预测导管消融术后心房颤动的复发
  • DOI:
    10.1016/j.hrthm.2023.03.775
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Xiaoxiao Qian;Brody Receveur;Tracy Plummer;Wei Dai;Inchi Hu;Marc H. Wish;Stephen Gaeta;Elizabeth Held;Eunice Yang;Zachary Hollis;Brett D. Atwater;Jiayang Sun;Christopher R. deFilippi;Vineet Kumar
  • 通讯作者:
    Vineet Kumar

Jiayang Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiayang Sun', 18)}}的其他基金

IGMS: Development and Research in Statistics, Radiology and Genetics
IGMS:统计学、放射学和遗传学的发展和研究
  • 批准号:
    0308875
  • 财政年份:
    2004
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Statistics and Applications
统计与应用
  • 批准号:
    0308609
  • 财政年份:
    2003
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Workshop: Developments and Challenges in Mixture Models, Bump Hunting and Measurement Error Models
研讨会:混合模型、凹凸搜索和测量误差模型的发展和挑战
  • 批准号:
    0124182
  • 财政年份:
    2001
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Statistical Inference and Modeling for Complex Data
复杂数据的统计推断和建模
  • 批准号:
    0072840
  • 财政年份:
    2000
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
POWRE: Statistics Research, Education Application
POWRE:统计研究、教育应用
  • 批准号:
    9870544
  • 财政年份:
    1998
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Non-parametric Inferences and Related Topics
非参数推理及相关主题
  • 批准号:
    9626108
  • 财政年份:
    1996
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Audacity of Exploration: Toward Automated Discovery of Security Flaws in Networked Systems through Intelligent Documentation Analysis
协作研究:SaTC:核心:中:大胆探索:通过智能文档分析自动发现网络系统中的安全缺陷
  • 批准号:
    2409269
  • 财政年份:
    2023
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Audacity of Exploration: Toward Automated Discovery of Security Flaws in Networked Systems through Intelligent Documentation Analysis
协作研究:SaTC:核心:中:大胆探索:通过智能文档分析自动发现网络系统中的安全缺陷
  • 批准号:
    2154138
  • 财政年份:
    2022
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Audacity of Exploration: Toward Automated Discovery of Security Flaws in Networked Systems through Intelligent Documentation Analysis
协作研究:SaTC:核心:中:大胆探索:通过智能文档分析自动发现网络系统中的安全缺陷
  • 批准号:
    2154199
  • 财政年份:
    2022
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Audacity of Exploration: Toward Automated Discovery of Security Flaws in Networked Systems through Intelligent Documentation Analysis
协作研究:SaTC:核心:中:大胆探索:通过智能文档分析自动发现网络系统中的安全缺陷
  • 批准号:
    2154078
  • 财政年份:
    2022
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Dynamic Phasor-Based Simulation and Stability Analysis of Networked Microgrids
基于动态相量的网络微电网仿真与稳定性分析
  • 批准号:
    566820-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Digitally networked dynamical systems: Performance and robustness analysis
数字网络动力系统:性能和鲁棒性分析
  • 批准号:
    DP210103272
  • 财政年份:
    2021
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Discovery Projects
Practical Analysis of Parallel and Networked Queueing Systems
并行和网络排队系统的实用分析
  • 批准号:
    EP/T031115/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Research Grant
Evaluation Analysis of Networked Compact City Considering the Wandering Behavior in the Urban Function and Residential guidance Area.
考虑城市功能与居住引导区游走行为的网络化紧凑城市评价分析。
  • 批准号:
    21K04296
  • 财政年份:
    2021
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
COVID-19: RAPID: Networked Compartmental Modeling and Analysis for Spread of COVID-19
COVID-19:RAPID:针对 COVID-19 传播的网络分区建模和分析
  • 批准号:
    2028523
  • 财政年份:
    2020
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Uncertainty Estimation and Control Performance Analysis in Networked Control Systems Including Humans
包括人类在内的网络控制系统的不确定性估计和控制性能分析
  • 批准号:
    20H02167
  • 财政年份:
    2020
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了