Distance-k Graph Coloring Algorithms for Numerical Optimization
用于数值优化的距离 k 图着色算法
基本信息
- 批准号:0306334
- 负责人:
- 金额:$ 37.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algorithms for large-scale numerical optimization that rely on derivative information require the repeated estimation of Jacobian and Hessian matrices. Since this is an expensive part of the computation, efficient methods for estimating these matrices via finite differences or automatic differentiation are needed. The problem of minimizing the number of function computations can be formulated as variants of distance-k graph coloring problems. In this research project, graph coloring algorithms to aid the solution of large-scale optimization problems are designed, analyzed, and implemented on serial and parallel computers. The specific coloring problem depends on the optimization context: whether the Jacobian or the Hessian is evaluated; whether all the nonzeros or only a subset need to be estimated; whether a direct method or substitution method is employed; and whether elements are estimated by partitions of columns alone, or partitions of both columns and rows. These variations lead to ten different matrix estimation problems and their graph coloring formulations. By unifying graph-theoretic formulations for estimating Jacobians and Hessians, a few general coloring problems that can be adapted to the different cases are identified. The focus is on developing new graph coloring algorithms and software for partial matrix estimation to precondition optimization problems.Optimization involves choosing the best option among many possible scenarios from a computational model of a physical situation, such as a manufacturing process involving chemically reacting fluid flows, or the simulation of electronic devices and circuits. In many such large-scale applications of optimization, computing the derivatives is a tedious, error-prone, and expensive task. Automatic differentiation methods and finite difference techniques have been devised in recent years to make this task less demanding and more reliable. This research project provides software infrastructure to reduce the computational time and storage needed to compute the derivatives using automatic differentiation or finite differences in large-scale optimization. One postdoctoral research associate and a graduate student, the former from an under-represented group in computer science, are being trained in combinatorial scientific computing. A module on graph coloring for estimating Jacobians via finite differences is being incorporated into an undergraduate scientific computing course, and undergraduate students are involved in developing and testing components of the software. With the involvement of colleagues at the Department of Energy's Argonne National Laboratory and Sandia National Laboratories, the software from this research is being applied to simulate chemically reacting flows and circuit models.
依赖导数信息的大规模数值优化算法需要重复估计雅可比矩阵和海森矩阵。由于这是计算的昂贵部分,因此需要通过有限差分或自动微分来估计这些矩阵的有效方法。最小化函数计算次数的问题可以用距离k图着色问题的变体来表示。在这个研究项目中,图着色算法,以帮助解决大规模的优化问题的设计,分析,并在串行和并行计算机上实现。具体的着色问题取决于优化的背景:是否雅可比或海森的评估;是否所有的非零或只有一个子集需要估计;是否采用直接方法或替代方法;以及是否元素估计的分区列单独,或分区的列和行。这些变化导致十个不同的矩阵估计问题和他们的图形着色公式。通过统一的图论公式估计雅可比和海森,一些一般的着色问题,可以适应不同的情况下确定。重点是开发新的图着色算法和软件,用于部分矩阵估计以预处理优化问题。优化涉及从物理情况的计算模型中的许多可能方案中选择最佳方案,例如涉及化学反应流体流动的制造过程,或电子设备和电路的模拟。在许多这样的大规模优化应用中,计算导数是一项繁琐、容易出错且昂贵的任务。近年来,自动微分方法和有限差分技术已经被设计出来,使这项任务要求更低,更可靠。该研究项目提供了软件基础设施,以减少计算所需的计算时间和存储使用自动微分或有限差分在大规模优化的衍生物。一名博士后研究助理和一名研究生(前者来自计算机科学领域代表性不足的群体)正在接受组合科学计算方面的培训。一个关于通过有限差分估计雅可比矩阵的图着色模块正在纳入本科科学计算课程,本科生参与开发和测试软件的组成部分。在能源部阿贡国家实验室和桑迪亚国家实验室的同事的参与下,这项研究的软件正在被应用于模拟化学反应流和电路模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Pothen其他文献
The chromatic number of squares of random graphs
随机图的色方数
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kalyan Garapaty;Daniel Lokshtanov;Hemanta K Maji;Alex Pothen - 通讯作者:
Alex Pothen
N2O Absorption Cross Section measurements in a Shock Tube at High Pressures and Temperatures
高压和高温下激波管中的 N2O 吸收截面测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alex Pothen;Nikolas Hulliger;Christopher W. Dennis;Justin J Urso;Michael Pierro;Subith S. Vasu;Cory Kinney - 通讯作者:
Cory Kinney
Two improved algorithms for envelope and wavefront reduction
- DOI:
10.1007/bf02510240 - 发表时间:
1997-09-01 - 期刊:
- 影响因子:1.700
- 作者:
Gary Kumfert;Alex Pothen - 通讯作者:
Alex Pothen
Alex Pothen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Pothen', 18)}}的其他基金
AitF:Collaborative Research: Bridging the Gap between Theory and Practice for Matching and Edge Cover Problems
AitF:协作研究:弥合匹配和边缘覆盖问题理论与实践之间的差距
- 批准号:
1637534 - 财政年份:2016
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
EAGER: Approximation Algorithms for b-Matching and b-Edge Covers
EAGER:b 匹配和 b 边缘覆盖的近似算法
- 批准号:
1552323 - 财政年份:2015
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
AF:Small: Combinatorial Algorithms to Enable Derivative Computations on Multicore Architectures
AF:Small:在多核架构上启用导数计算的组合算法
- 批准号:
1218916 - 财政年份:2012
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Empowering Computational Science and Engineering via Automatic Differentiation
通过自动微分赋能计算科学与工程
- 批准号:
0830645 - 财政年份:2008
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Problems in Combinatorial Scientific Computing (Data Migration in Parallel Computing: Models and Algorithms)
组合科学计算中的问题(并行计算中的数据迁移:模型和算法)
- 批准号:
0515218 - 财政年份:2005
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
Parallel Algorithms for Incomplete Factorization Preconditions
不完全因式分解前提条件的并行算法
- 批准号:
9807172 - 财政年份:1998
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Mathematical Sciences: Solutions-Adaptive Grid Partitioning and Variable Ordering for PDEs
数学科学:解决方案 - 偏微分方程的自适应网格划分和变量排序
- 批准号:
9505110 - 财政年份:1995
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
Sparse Matrix Algorithms on Distributed Memory Multiprocessors
分布式内存多处理器上的稀疏矩阵算法
- 批准号:
9496210 - 财政年份:1994
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Sparse Matrix Algorithms on Distributed Memory Multiprocessors
分布式内存多处理器上的稀疏矩阵算法
- 批准号:
9024954 - 财政年份:1991
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Research on Graph Coloring and Graph Structure
图着色与图结构研究
- 批准号:
2348702 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Coloring for restricted graph classes
受限图形类的着色
- 批准号:
551863-2020 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Improving Design for Additive Manufacturing through Physically-integrated Design Concepts Generated from Computationally Efficient Graph Coloring Techniques
协作研究:通过计算高效的图形着色技术生成的物理集成设计概念改进增材制造的设计
- 批准号:
2017968 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Coloring for restricted graph classes
受限图形类的着色
- 批准号:
541285-2019 - 财政年份:2019
- 资助金额:
$ 37.07万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Improving Design for Additive Manufacturing through Physically-integrated Design Concepts Generated from Computationally Efficient Graph Coloring Techniques
协作研究:通过计算高效的图形着色技术生成的物理集成设计概念改进增材制造的设计
- 批准号:
1903810 - 财政年份:2018
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Collaborative Research: Improving Design for Additive Manufacturing through Physically-integrated Design Concepts Generated from Computationally Efficient Graph Coloring Techniques
协作研究:通过计算高效的图形着色技术生成的物理集成设计概念改进增材制造的设计
- 批准号:
1727743 - 财政年份:2017
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Collaborative Research: Improving Design for Additive Manufacturing through Physically-integrated Design Concepts Generated from Computationally Efficient Graph Coloring Techniques
协作研究:通过计算高效的图形着色技术生成的物理集成设计概念改进增材制造的设计
- 批准号:
1727190 - 财政年份:2017
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
RUI: Graph Coloring and Choosability
RUI:图形着色和可选择性
- 批准号:
1600778 - 财政年份:2016
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Interface estimation method for graph coloring-based link scheduling in wireless relay networks
无线中继网络中基于图着色的链路调度的接口估计方法
- 批准号:
25330103 - 财政年份:2013
- 资助金额:
$ 37.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




