Mathematical Sciences: Solutions-Adaptive Grid Partitioning and Variable Ordering for PDEs
数学科学:解决方案 - 偏微分方程的自适应网格划分和变量排序
基本信息
- 批准号:9505110
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-08-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dear Al, Alex has kept me in the loop as you and he have converged on a revised scope of our proposed investigation into partitioning and ordering methods that take advantage of knowledge of coefficient magnitude, instead of coefficient structure only. Thanks for your support of this work, whose outcomes could feed directly into several other projects. To complete what I believe you need before processing this grant further, he and I have abstracted the project into the following two paragraphs for peers and nontechnical readers. I hope it is okay. Best Regards, David ========================================================================== Solution-adaptive Grid Partitioning and Variable Ordering for PDEs Alex Pothen and David E. Keyes The proposers consider grid partitioning and variable ordering problems that come to the fore in the parallel computation of problems modeled by partial differential equations discretized on unstructured grids. Partitioning algorithms that maintain load balance among the processors while incurring low communication costs for distributed memory parallelism have been developed in earlier work. Here solution-adaptive partitioning methods are proposed that strive, in addition, to attain good convergence rates in such data parallel contexts. Communication volume per iteration may rise, but only modestly for moderate-granularity parallelism, while the more important number of message-startups per iteration should not be strongly affected. Solution-adaptive ordering methods are also proposed for the fast solution of the problems on the local partitions. Two recently developed classes of partitioning and ordering algorithms that have proved to be successful in non-adaptive contexts will feature prominently in both the partitioning and ordering phases of this proposal. One class consists of spectral algorithms, (i.e., algorithms that make use of an approximation to a certain eigenvector of a Laplacian matrix derived from the grid and the discretization sche me), while the second class includes multilevel algorithms. Both algorithms will be generalized to the solution-adaptive context. Many computational problems in science and engineering can be modeled by partial differential equations, and subsequently solved as a system of algebraic equations defined on an unstructured grid. The most natural form of parallelism for such problems requires the original domain to be decomposed into subdomains, which are mapped whole on to individual processors. Iterative domain decomposition algorithms fit naturally into this framework, wherein a solution is assembled from subproblems whose boundary conditions are set by transmitting a limited amount of information between nearest neighbors. The partitioning and ordering methods proposed herein will be useful for solution methods of such domain decomposition type, which are designed with respect for the high communication-to-computation cost ratio in contemporary distributed-memory computers. The key opportunity to be exploited in this work is that of synergistically joining two ideas that have matured separately, and are usually used as ``black boxes''-- partitioning and ordering based on sparsity structure only, and domain-blocked iteration based on understanding the physical dependencies reflected in the coefficients. The software tools developed in this work will be demonstrated for ``grand challenge'' problems in application areas such as aerodynamics and geophysics.
亲爱的艾尔,亚历克斯一直让我在循环中,因为你和他已经收敛于我们提出的分区和排序方法,利用系数大小的知识,而不仅仅是系数结构的研究的修订范围。 感谢您对这项工作的支持,其成果可以直接用于其他几个项目。 为了在进一步处理这笔赠款之前完成我认为您需要的内容,他和我将该项目抽象为以下两段,供同行和非技术读者阅读。 我希望这没问题。 最好的问候,大卫=凯斯 提议者考虑网格划分和变量排序问题,在并行计算的问题建模的偏微分方程离散非结构化网格中脱颖而出。在早期的工作中已经开发了分区算法,保持处理器之间的负载平衡,同时产生低通信成本的分布式存储器并行。 这里的解决方案自适应分区方法,提出了努力,此外,在这样的数据并行上下文中,以达到良好的收敛速度。 每次迭代的通信量可能会增加,但对于中等粒度的并行性来说只是适度的,而每次迭代的消息启动的更重要的数量不应该受到强烈的影响。为快速求解局部剖分上的问题,提出了解自适应排序方法。 最近开发的两类分区和排序算法,已被证明是成功的非自适应上下文将突出的特点,在分区和排序阶段的建议。 一类是谱算法(即,利用对从网格和离散化方案导出的拉普拉斯矩阵的特定特征向量的近似的算法),而第二类包括多级算法。 这两种算法将被推广到解决方案自适应上下文。 科学和工程中的许多计算问题都可以用偏微分方程来建模,然后在非结构化网格上求解代数方程组。 对于这些问题,最自然的并行形式需要将原始域分解为子域,这些子域被整体映射到各个处理器上。 迭代区域分解算法自然适合这个框架,其中的解决方案是从子问题,其边界条件是通过传输最近的邻居之间的有限数量的信息。 本文提出的分区和排序方法将是有用的解决方案的方法,这种域分解类型,这是针对高通信计算成本比在当代分布式存储器计算机设计的。 在这项工作中要利用的关键机会是协同地加入两个已经分别成熟的想法,并且通常被用作“黑匣子”-仅基于稀疏结构的分区和排序,以及基于理解系数中反映的物理依赖关系的域阻塞迭代。 在这项工作中开发的软件工具将被证明为“重大挑战”的问题,如空气动力学和地球物理学的应用领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Pothen其他文献
The chromatic number of squares of random graphs
随机图的色方数
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kalyan Garapaty;Daniel Lokshtanov;Hemanta K Maji;Alex Pothen - 通讯作者:
Alex Pothen
N2O Absorption Cross Section measurements in a Shock Tube at High Pressures and Temperatures
高压和高温下激波管中的 N2O 吸收截面测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alex Pothen;Nikolas Hulliger;Christopher W. Dennis;Justin J Urso;Michael Pierro;Subith S. Vasu;Cory Kinney - 通讯作者:
Cory Kinney
Two improved algorithms for envelope and wavefront reduction
- DOI:
10.1007/bf02510240 - 发表时间:
1997-09-01 - 期刊:
- 影响因子:1.700
- 作者:
Gary Kumfert;Alex Pothen - 通讯作者:
Alex Pothen
Alex Pothen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Pothen', 18)}}的其他基金
AitF:Collaborative Research: Bridging the Gap between Theory and Practice for Matching and Edge Cover Problems
AitF:协作研究:弥合匹配和边缘覆盖问题理论与实践之间的差距
- 批准号:
1637534 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
EAGER: Approximation Algorithms for b-Matching and b-Edge Covers
EAGER:b 匹配和 b 边缘覆盖的近似算法
- 批准号:
1552323 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
AF:Small: Combinatorial Algorithms to Enable Derivative Computations on Multicore Architectures
AF:Small:在多核架构上启用导数计算的组合算法
- 批准号:
1218916 - 财政年份:2012
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Empowering Computational Science and Engineering via Automatic Differentiation
通过自动微分赋能计算科学与工程
- 批准号:
0830645 - 财政年份:2008
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Problems in Combinatorial Scientific Computing (Data Migration in Parallel Computing: Models and Algorithms)
组合科学计算中的问题(并行计算中的数据迁移:模型和算法)
- 批准号:
0515218 - 财政年份:2005
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Distance-k Graph Coloring Algorithms for Numerical Optimization
用于数值优化的距离 k 图着色算法
- 批准号:
0306334 - 财政年份:2003
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Parallel Algorithms for Incomplete Factorization Preconditions
不完全因式分解前提条件的并行算法
- 批准号:
9807172 - 财政年份:1998
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Sparse Matrix Algorithms on Distributed Memory Multiprocessors
分布式内存多处理器上的稀疏矩阵算法
- 批准号:
9496210 - 财政年份:1994
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Sparse Matrix Algorithms on Distributed Memory Multiprocessors
分布式内存多处理器上的稀疏矩阵算法
- 批准号:
9024954 - 财政年份:1991
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
- 批准号:
1240744 - 财政年份:2012
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
- 批准号:
0628079 - 财政年份:2007
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Structure of Solutions to Certain Equations in the Physical Sciences
数学科学:物理科学中某些方程解的结构
- 批准号:
9703711 - 财政年份:1997
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: The Incompressible Euler Equations, the Vlasov-Poisson Equations, and Numerical Methods for Their Solutions
数学科学:不可压缩欧拉方程、弗拉索夫-泊松方程及其解的数值方法
- 批准号:
9622958 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Weak Solutions of Geometric Evolution Equations
数学科学:几何演化方程的弱解
- 批准号:
9626405 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems and Meromorphic Solutions of Differential Equations
数学科学:反谱问题和微分方程的亚纯解
- 批准号:
9623121 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
- 批准号:
9623207 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9623161 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Optical Solitons and Semiclassical Solutions of the Quantum Nonlinear Schrodinger Equation
数学科学:光学孤子和量子非线性薛定谔方程的半经典解
- 批准号:
9508711 - 财政年份:1995
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant