Geometry of Integrable Systems and Submanifold Geometry

可积系统的几何和子流形几何

基本信息

  • 批准号:
    0306446
  • 负责人:
  • 金额:
    $ 14.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

The proposal of Chuu-Lian Terng contains threeprojects. The first project is joint with KarenUhlenbeck (University of Texas at Austin). Terng andUhlenbeck have collaborated for the past several yearsto give geometric interpretations and applications ofanalytic and algebraic constructions in integrablesystems. They propose to continue their investigationof geometric aspects of integrable systems, Virasoroactions and topological conformal field theory. Thesecond project is on submanifolds in symmetric spaceswhose Gauss-Codazzi equations are integrable systems.Terng has made several contributions to this area whensubmanifolds lie in a space form, and she plans tocontinue the research for the symmetric space case. The third project is joint with Gudlaugur Thorbergsson(University of Koln). Terng and Thorbergsson havemade contributions to the theory of isoparametric submanifolds in space forms and equifocal submanifoldsin symmetric spaces. In this project, they proposeto study the geometry of submanifolds in complex andquaternionic n-space whose U(n) and Sp(n)-invariantsare constant in various senses. The success of thisproject should give better understanding ofsubmanifold geometry in Hermitian and quaternionicKahler symmetric spaces. The theory of integrable systems has deep relationswith mechanics and dynamics, applied mathematics,algebra, theoretical physics, partial differentialequations, algebraic geometry, and differentialgeometry. It has also been used in other sciences. For example, (1) the sine-Gordon equation, which isthe Gauss-Codazzi equation for constant negativeGaussian curvature surfaces in 3-space, also arises inplasma physics; (2) the non-linear Schrodingerequation models the propergation of wave envelope inoptic fiber. Success of the proposed projects willgive better understanding of the structure ofintegrable systems and their geometrizations.
邓楚莲的提案包含三个项目。第一个项目是与德克萨斯大学奥斯汀分校的KarenUhlenbeck联合开展的。Terng和Uhlenbeck在过去的几年里一直在合作,给出可积系统中解析和代数结构的几何解释和应用。他们建议继续研究可积系统的几何方面、Virasoro作用量和拓扑共形场理论。第二个项目是关于对称空间中Gauss-Codazzi方程是可积系统的子流形。Terng在这个领域做出了一些贡献,当子流形位于空间形式时,她计划继续研究对称空间的情况。第三个项目是与Gudlagur Thorbergsson(科隆大学)联合开展的。Terng和Thorbergsson对空间形式的等参子流形和对称空间的等焦子流形理论作出了贡献。在这个项目中,他们建议研究复数和四元数n-空间中的子流形的几何,这些空间的U(N)和Sp(N)不变量在各种意义上都是常量。这个项目的成功应该会更好地理解厄米特和四元数Kahler对称空间中的子流形几何。可积系统理论与力学、动力学、应用数学、代数、理论物理、偏微分方程组、代数几何和微分几何有着深刻的联系。它还被用于其他科学。例如,(1)Sine-Gordon方程,即三维常负高斯曲率表面的Gauss-Codazzi方程,也出现在等离子体物理中;(2)非线性薛定谔方程模拟光纤中波包的特性。拟议项目的成功将使人们更好地了解不可拆分系统的结构及其几何化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chuu-lian Terng其他文献

Chuu-lian Terng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chuu-lian Terng', 18)}}的其他基金

Differential Geometry, group actions, and soliton equations
微分几何、群作用和孤子方程
  • 批准号:
    1109342
  • 财政年份:
    2011
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Geometric Aspects of Integrable Systems
可积系统的几何方面
  • 批准号:
    0707132
  • 财政年份:
    2007
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
  • 批准号:
    0707124
  • 财政年份:
    2007
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Geometry of Integrable Systems and Submanifold Geometry
可积系统的几何和子流形几何
  • 批准号:
    0529756
  • 财政年份:
    2005
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Differential Geometry and Integrable Systems
微分几何和可积系统
  • 批准号:
    9972172
  • 财政年份:
    1999
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Julia Robinson Celebration of Women in Mathematics
数学科学:朱莉娅·罗宾逊数学女性庆典
  • 批准号:
    9629880
  • 财政年份:
    1996
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Submanifold Geometry and Integrable Systems
数学科学:子流形几何和可积系统
  • 批准号:
    9626130
  • 财政年份:
    1996
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
NSF/AWM Travel Grants for Women in the Mathematical Sciences
NSF/AWM 为数学科学领域女性提供的旅行补助金
  • 批准号:
    9508015
  • 财政年份:
    1995
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Submanifold Geometry
数学科学:子流形几何
  • 批准号:
    9304285
  • 财政年份:
    1993
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Submanifold Geometry and Polar Actions
数学科学:子流形几何和极坐标作用
  • 批准号:
    9103221
  • 财政年份:
    1991
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing grant

相似海外基金

PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
  • 批准号:
    2332342
  • 财政年份:
    2024
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
  • 批准号:
    22H00094
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    RGPIN-2020-04060
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Integrable Systems and Geometry
量子可积系统和几何
  • 批准号:
    2203823
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Discovery Grants Program - Individual
Finite dimensional integrable systems and differential geometry
有限维可积系统和微分几何
  • 批准号:
    DP210100951
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Discovery Projects
Multi-dimensionally consistent integrable systems in geometry and algebra
几何和代数中的多维一致可积系统
  • 批准号:
    DP200102118
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了