Mathematical Sciences: Submanifold Geometry and Polar Actions

数学科学:子流形几何和极坐标作用

基本信息

  • 批准号:
    9103221
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-07-01 至 1993-12-31
  • 项目状态:
    已结题

项目摘要

The principal investigator will study the geometry of submanifolds of symmetric space through polar actions on the symmetric space. A polar action is an invariant group action on the symmetric space such that the submanifold meets the orbits of the action orthogonally. The orbits of such an action play a role in the submanifold geometry and in Morse theory on the manifold. This tool is expected to find application in the infinite dimensional case as well as the standard finite dimensional case. Symmetric spaces, such as the plane or the sphere, are among the most important spaces in geometry and physics. The principal investigator will study subspaces of symmetric spaces, for example a curve on the sphere. The major tool will be a study of the invariant motions of the symmetric space, such as the rotations of the sphere, which have a particular geometric relationship with the subspace. An understanding of this special set of motions will provide details about the geometry of the subspace itself.//
主要研究者将通过对对称空间的极作用研究对称空间子流形的几何。极作用是对称空间上的不变群作用,使得子流形正交地满足作用的轨道。这种作用的轨道在子流形几何和关于流形的莫尔斯理论中起着重要的作用。该工具有望在无限维情况下以及标准有限维情况下得到应用。对称空间,如平面或球面,是几何和物理中最重要的空间之一。首席研究员将研究对称空间的子空间,例如球面上的曲线。主要的工具将是研究对称空间的不变运动,例如球体的旋转,它与子空间有特定的几何关系。对这组特殊运动的理解将提供关于子空间本身几何的细节。//

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chuu-lian Terng其他文献

Chuu-lian Terng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chuu-lian Terng', 18)}}的其他基金

Differential Geometry, group actions, and soliton equations
微分几何、群作用和孤子方程
  • 批准号:
    1109342
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric Aspects of Integrable Systems
可积系统的几何方面
  • 批准号:
    0707132
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
  • 批准号:
    0707124
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry of Integrable Systems and Submanifold Geometry
可积系统的几何和子流形几何
  • 批准号:
    0529756
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry of Integrable Systems and Submanifold Geometry
可积系统的几何和子流形几何
  • 批准号:
    0306446
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Differential Geometry and Integrable Systems
微分几何和可积系统
  • 批准号:
    9972172
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Julia Robinson Celebration of Women in Mathematics
数学科学:朱莉娅·罗宾逊数学女性庆典
  • 批准号:
    9629880
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Submanifold Geometry and Integrable Systems
数学科学:子流形几何和可积系统
  • 批准号:
    9626130
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/AWM Travel Grants for Women in the Mathematical Sciences
NSF/AWM 为数学科学领域女性提供的旅行补助金
  • 批准号:
    9508015
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Submanifold Geometry
数学科学:子流形几何
  • 批准号:
    9304285
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
  • 批准号:
    NE/Y003721/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了