Variational problems in optimal mass transportation and intersection homology theory

最优公共交通中的变分问题和交叉口同源理论

基本信息

  • 批准号:
    0306686
  • 负责人:
  • 金额:
    $ 7.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

VARIATIONAL PROBLEMS IN MASS TRANSPORTATION AND INTERSECTIONHOMOLOGYPI: QINGLAN XIA ABSTRACT: The goal of the proposed projects is to study geometric variational problems derived from optimal mass transportation as well as from the intersection homology theory of singular varieties. The first proposed project is building a model to simulate ``tree shaped'' objects in nature, and apply it to optimal mass transportation problems. The problems proposed here include building a transport theory of rectifiable varifolds, finding connections of this model with other problems, and extending this theory to more general spaces. The second project concerns minimal surfaces that live in singular spaces such as singular complex projective varieties under their intersection homology groups. In his thesis, the PI gave a rectifiable currents' version of intersection homology theory on stratified subanalytic pseudomanifolds. He showed that there exists a modified mass minimizer (which is a rectifiable current) in every intersection homology class. The associated mass minimizers turn out to be almost minimal currents. The mass minimizers the PI considered may intersect (in a controlled fashion) the singular locus of the singular space. In this proposal, the PI will continue his investigation on regularity properties of the associated mass minimizers, and possible link with Hodge theory. One of the main methods used in both projects is geometric measure theory. The phenomenon of ``tree shaped'' path is very common in nature. Trees, railways, airlines, lightning, the circulatory system, and neural networks are common examples. The research of optimal ``tree shaped'' path not only expands the research area of mass transportation, but also of both theoretical and applied interest. Biologists are currently looking for a model to give a fundamental explanation for biological scaling laws which are mathematical expressions of how organisms' biology varies with their size. The model proposed in this research might be the desired one. As Monge's mass transport problem is strongly linked with many areas of mathematics, especially with partial differential equations, it is also possible that this new approach of mass transportation will find its applications in economics, biology, image processing and some other subjects. Soap films are physical model for minimal surfaces. These surfaces play an important role as a tool in the study of topology, geometry and physics. The research of the second project concerns global properties of soap films that live in more general singular spaces and possible links to Hodge theory and optimal mass transportation. It might provides some hint to the famous Hodge conjecture.
摘要:本课题的目标是研究由最优质量运输和奇异变量的交点同调理论导出的几何变分问题。第一个提议的项目是建立一个模型来模拟自然界中的“树状”物体,并将其应用于最优的公共交通问题。本文提出的问题包括建立可整流变量的输运理论,寻找该模型与其他问题的联系,并将该理论推广到更一般的空间。第二个项目涉及奇异空间中的最小曲面,例如在其相交同调群下的奇异复射影变。在他的论文中,PI给出了可整流版本的关于分层次解析伪流形的交同调理论。他证明了在每一个交集同调类中都存在一个修正的质量最小器(它是一个可整流电流)。相关的质量最小值几乎是最小的电流。PI所考虑的质量最小值可能(以受控的方式)与奇异空间的奇异轨迹相交。在这个提议中,PI将继续他的研究相关的质量最小化的规律性,并可能与霍奇理论的联系。这两个项目中使用的主要方法之一是几何测量理论。“树形”路径的现象在自然界中很常见。树木、铁路、航空、闪电、循环系统和神经网络都是常见的例子。最优“树形”路径的研究不仅拓展了大众交通的研究领域,而且具有理论和应用的双重意义。生物学家目前正在寻找一种模型来对生物标度定律进行基本解释,生物标度定律是生物体的生物学特性如何随其大小而变化的数学表达式。本研究提出的模型可能是理想的模型。由于Monge的质量运输问题与许多数学领域密切相关,尤其是偏微分方程,因此这种新的质量运输方法也有可能在经济学、生物学、图像处理和其他一些学科中得到应用。肥皂膜是最小表面的物理模型。这些曲面在拓扑学、几何学和物理学的研究中起着重要的作用。第二个项目的研究涉及肥皂膜的全局特性,这些特性存在于更一般的单一空间中,并可能与霍奇理论和最佳大众运输联系起来。这可能会给著名的霍奇猜想提供一些线索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qinglan Xia其他文献

Transport multi-paths with capacity constraints
容量受限的多路径传输
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qinglan Xia;Haotian Sun
  • 通讯作者:
    Haotian Sun
A fractal shape optimization problem in branched transport
分支运输中的分形形状优化问题
The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains
无界域中带 Wasserstein 罚项的等周问题最小化器的存在性
The Exchange Value Embedded in a Transport System
运输系统中嵌入的交换价值
Ramified Optimal Transportation with Payoff on the Boundary
边界上有回报的优化最优运输

Qinglan Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qinglan Xia', 18)}}的其他基金

Some variational problems related to optimal transportation
与最优交通相关的一些变分问题
  • 批准号:
    1109663
  • 财政年份:
    2011
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Standard Grant
Some geometric variational problems on ramified transportation and intersection homology
分支交通与交叉同调的一些几何变分问题
  • 批准号:
    0710714
  • 财政年份:
    2007
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Standard Grant
Variational problems in optimal mass transportation and intersection homology theory
最优公共交通中的变分问题和交叉口同源理论
  • 批准号:
    0607107
  • 财政年份:
    2005
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structure Analysis of Science and Mathematics Problems and Application for Individually Optimal Learning
科学和数学问题的结构分析及其在个体最优学习中的应用
  • 批准号:
    23K02748
  • 财政年份:
    2023
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
  • 批准号:
    2305475
  • 财政年份:
    2023
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Standard Grant
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2022
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Discovery Grants Program - Individual
Measurement and Multimethod Validation of Alcohol Use Disorder Etiologic Mechanisms
酒精使用障碍病因机制的测量和多方法验证
  • 批准号:
    10504509
  • 财政年份:
    2022
  • 资助金额:
    $ 7.74万
  • 项目类别:
Measurement and Multimethod Validation of Alcohol Use Disorder Etiologic Mechanisms
酒精使用障碍病因机制的测量和多方法验证
  • 批准号:
    10679075
  • 财政年份:
    2022
  • 资助金额:
    $ 7.74万
  • 项目类别:
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
  • 批准号:
    2031213
  • 财政年份:
    2021
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Standard Grant
Optimal design for inverse problems in biomedical engineering
生物医学工程反问题的优化设计
  • 批准号:
    2600792
  • 财政年份:
    2021
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2021
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
  • 批准号:
    516700-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Solving container congestion problems by fast enumeration of optimal answers
通过快速枚举最佳答案解决集装箱拥堵问题
  • 批准号:
    20K04967
  • 财政年份:
    2020
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了