Variational problems in optimal mass transportation and intersection homology theory
最优公共交通中的变分问题和交叉口同源理论
基本信息
- 批准号:0607107
- 负责人:
- 金额:$ 2.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
VARIATIONAL PROBLEMS IN MASS TRANSPORTATION AND INTERSECTIONHOMOLOGYPI: QINGLAN XIA ABSTRACT: The goal of the proposed projects is to study geometric variational problems derived from optimal mass transportation as well as from the intersection homology theory of singular varieties. The first proposed project is building a model to simulate ``tree shaped'' objects in nature, and apply it to optimal mass transportation problems. The problems proposed here include building a transport theory of rectifiable varifolds, finding connections of this model with other problems, and extending this theory to more general spaces. The second project concerns minimal surfaces that live in singular spaces such as singular complex projective varieties under their intersection homology groups. In his thesis, the PI gave a rectifiable currents' version of intersection homology theory on stratified subanalytic pseudomanifolds. He showed that there exists a modified mass minimizer (which is a rectifiable current) in every intersection homology class. The associated mass minimizers turn out to be almost minimal currents. The mass minimizers the PI considered may intersect (in a controlled fashion) the singular locus of the singular space. In this proposal, the PI will continue his investigation on regularity properties of the associated mass minimizers, and possible link with Hodge theory. One of the main methods used in both projects is geometric measure theory. The phenomenon of ``tree shaped'' path is very common in nature. Trees, railways, airlines, lightning, the circulatory system, and neural networks are common examples. The research of optimal ``tree shaped'' path not only expands the research area of mass transportation, but also of both theoretical and applied interest. Biologists are currently looking for a model to give a fundamental explanation for biological scaling laws which are mathematical expressions of how organisms' biology varies with their size. The model proposed in this research might be the desired one. As Monge's mass transport problem is strongly linked with many areas of mathematics, especially with partial differential equations, it is also possible that this new approach of mass transportation will find its applications in economics, biology, image processing and some other subjects. Soap films are physical model for minimal surfaces. These surfaces play an important role as a tool in the study of topology, geometry and physics. The research of the second project concerns global properties of soap films that live in more general singular spaces and possible links to Hodge theory and optimal mass transportation. It might provides some hint to the famous Hodge conjecture.
质量输运和相交同调中的变分问题PI:夏青兰摘要:本课题的目标是研究由最优质量输运和奇异簇的相交同调理论导出的几何变分问题.第一个项目是建立一个模型来模拟自然界中的“树形”物体,并将其应用于最优大众运输问题。这里提出的问题包括建立一个运输理论的可整流varifolds,找到这个模型与其他问题的连接,并将这个理论扩展到更一般的空间。第二个项目关注的极小曲面,生活在奇异空间,如奇异复射影簇下的交叉同源群。在他的论文中,PI给出了分层次解析伪流形上的交同调理论的可求正流版本。他表明,存在一个修改的质量极小(这是一个整流电流)在每一个交叉同源类。与之相关的质量最小化者几乎是最小的电流。PI所考虑的质量最小化器可以(以受控的方式)与奇异空间的奇异轨迹相交。在这个提议中,PI将继续研究相关质量最小化的规律性,以及与霍奇理论的可能联系。在这两个项目中使用的主要方法之一是几何测量理论。 "树形“路径现象在自然界中是非常普遍的。树木、铁路、航空公司、闪电、循环系统和神经网络都是常见的例子。最优“树形”路径的研究不仅拓展了公共交通的研究领域,而且具有重要的理论意义和应用价值。生物学家目前正在寻找一个模型,以给出生物尺度定律的基本解释,生物尺度定律是生物体生物学如何随其大小而变化的数学表达式。本研究提出的模型可能是理想的模型。由于Monge的质量输运问题与数学的许多领域,特别是与偏微分方程密切相关,因此这种新的质量输运方法也可能在经济学、生物学、图像处理等学科中得到应用。肥皂膜是最小表面的物理模型。这些曲面在拓扑学、几何学和物理学的研究中起着重要的作用。第二个项目的研究涉及生活在更一般的奇异空间和可能的联系霍奇理论和最优质量运输的肥皂膜的全局属性。这可能为著名的Hodge猜想提供一些线索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qinglan Xia其他文献
Transport multi-paths with capacity constraints
容量受限的多路径传输
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Qinglan Xia;Haotian Sun - 通讯作者:
Haotian Sun
A fractal shape optimization problem in branched transport
分支运输中的分形形状优化问题
- DOI:
10.1016/j.matpur.2018.06.007 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Paul Pegon;F. Santambrogio;Qinglan Xia - 通讯作者:
Qinglan Xia
The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains
无界域中带 Wasserstein 罚项的等周问题最小化器的存在性
- DOI:
10.1515/acv-2020-0083 - 发表时间:
2020 - 期刊:
- 影响因子:1.7
- 作者:
Qinglan Xia;Bohan Zhou - 通讯作者:
Bohan Zhou
The Exchange Value Embedded in a Transport System
运输系统中嵌入的交换价值
- DOI:
10.1007/s00245-010-9102-0 - 发表时间:
2010 - 期刊:
- 影响因子:1.8
- 作者:
Qinglan Xia;Shaofeng Xu - 通讯作者:
Shaofeng Xu
Ramified Optimal Transportation with Payoff on the Boundary
边界上有回报的优化最优运输
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Qinglan Xia;Shaofeng Xu - 通讯作者:
Shaofeng Xu
Qinglan Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qinglan Xia', 18)}}的其他基金
Some variational problems related to optimal transportation
与最优交通相关的一些变分问题
- 批准号:
1109663 - 财政年份:2011
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Some geometric variational problems on ramified transportation and intersection homology
分支交通与交叉同调的一些几何变分问题
- 批准号:
0710714 - 财政年份:2007
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Variational problems in optimal mass transportation and intersection homology theory
最优公共交通中的变分问题和交叉口同源理论
- 批准号:
0306686 - 财政年份:2003
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Structure Analysis of Science and Mathematics Problems and Application for Individually Optimal Learning
科学和数学问题的结构分析及其在个体最优学习中的应用
- 批准号:
23K02748 - 财政年份:2023
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
- 批准号:
2305475 - 财政年份:2023
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2022
- 资助金额:
$ 2.39万 - 项目类别:
Discovery Grants Program - Individual
Measurement and Multimethod Validation of Alcohol Use Disorder Etiologic Mechanisms
酒精使用障碍病因机制的测量和多方法验证
- 批准号:
10504509 - 财政年份:2022
- 资助金额:
$ 2.39万 - 项目类别:
Measurement and Multimethod Validation of Alcohol Use Disorder Etiologic Mechanisms
酒精使用障碍病因机制的测量和多方法验证
- 批准号:
10679075 - 财政年份:2022
- 资助金额:
$ 2.39万 - 项目类别:
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Optimal design for inverse problems in biomedical engineering
生物医学工程反问题的优化设计
- 批准号:
2600792 - 财政年份:2021
- 资助金额:
$ 2.39万 - 项目类别:
Studentship
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2021
- 资助金额:
$ 2.39万 - 项目类别:
Discovery Grants Program - Individual
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:
516700-2018 - 财政年份:2020
- 资助金额:
$ 2.39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Solving container congestion problems by fast enumeration of optimal answers
通过快速枚举最佳答案解决集装箱拥堵问题
- 批准号:
20K04967 - 财政年份:2020
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)