A Study of Random Matrix Problems Related to Statistics
统计相关随机矩阵问题的研究
基本信息
- 批准号:0308151
- 负责人:
- 金额:$ 10.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Within the general area of random matrix problems, the PI will especially focus on problems relevant to the following four types of matrices: (i) orthogonal and unitary matrices; (ii) sample correlation matrices; (iii) matrices with matrix-t distribution; (iv) Toeplitz matrices. Based on the PI's and other authors' work on orthogonal matrices, Diaconis has posed an open problem on how a typical random orthogonal matrix can be approximated by a matrix with independent standard normal random variables as entries. This is the motivation to study (i). Part (ii) comes from a statistical hypothesis testing problem when the dimension of a multivariate population distribution and the sample sizes of data from this population are large. By using Principal Component analysis, the maximum eigenvalue of the sample correlation matrix has to be studied. Part (iii) arises from a statistical study on a problem from Image Analysis. The largest entry of matrices with a matrix-t distribution is of central interest. Part (iv) is an unsolved problem in RTM. This type of matrix arises in time series analysis.The problems studied come from trading markets, engineering and science. The solutions can bring researchers and practitioners from different fields together to exchange ideas: the study helps practitioners by providing new techniques for use and researchers by obtaining motivation and real problems for solution. Matrices are always behind databases. Random matrix theories may give a clean understanding of databases in a certain sense. For example, the largest eigenvalue of a correlation matrix, which is one of the four proposed problems, can tell if multiple quantities depend on each other or not. Further, this work may help graduate students gain a better understanding of this subject.
在随机矩阵问题的一般领域内,PI将特别关注与以下四种类型的矩阵相关的问题:(i)正交和酉矩阵;(ii)样本相关矩阵;(iii)矩阵t分布矩阵;(iv)Toeplitz矩阵。基于PI和其他作者对正交矩阵的研究,Diaconis提出了一个公开问题,即如何用一个具有独立标准正态随机变量的矩阵来近似一个典型的随机正交矩阵。这就是学习的动机(一)。第(ii)部分来自一个统计假设检验问题,当一个多变量总体分布的维数和来自这个总体的数据的样本量是大的。利用主成分分析方法,研究样本相关矩阵的最大特征值。第(iii)部分来自图像分析问题的统计研究。具有矩阵-t分布的矩阵的最大项是中心兴趣。第(iv)部分是RTM中未解决的问题。这种类型的矩阵出现在时间序列分析中。研究的问题来自交易市场,工程和科学。这些解决方案可以将来自不同领域的研究人员和从业人员聚集在一起交流思想:研究通过提供新的技术来帮助从业人员使用,研究人员通过获得动力和真实的问题来解决。矩阵总是在数据库后面。随机矩阵理论在一定意义上可以给数据库一个清晰的理解。例如,相关矩阵的最大特征值,这是四个提出的问题之一,可以告诉如果多个量相互依赖或不。此外,这项工作可以帮助研究生更好地了解这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tiefeng Jiang其他文献
The limiting distributions of eigenvalues of sample correlation matrices
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Tiefeng Jiang - 通讯作者:
Tiefeng Jiang
Eigenvalues of large chiral non-Hermitian random matrices
大型手性非厄米随机矩阵的特征值
- DOI:
10.1063/1.5088607 - 发表时间:
2020 - 期刊:
- 影响因子:1.3
- 作者:
Shuhua Chang;Tiefeng Jiang;Y. Qi - 通讯作者:
Y. Qi
Distributions of Eigenvalues of Large Euclidean Matrices Generated from Three Manifolds
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Tiefeng Jiang - 通讯作者:
Tiefeng Jiang
Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles
- DOI:
10.1007/s00440-008-0146-x - 发表时间:
2009-05 - 期刊:
- 影响因子:2
- 作者:
Tiefeng Jiang - 通讯作者:
Tiefeng Jiang
Limit theorems for beta-Jacobi ensembles
- DOI:
10.3150/12-bej495 - 发表时间:
2009-11 - 期刊:
- 影响因子:1.5
- 作者:
Tiefeng Jiang - 通讯作者:
Tiefeng Jiang
Tiefeng Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tiefeng Jiang', 18)}}的其他基金
Random Matrices with Application to Quantum Computing and Econometrics
随机矩阵在量子计算和计量经济学中的应用
- 批准号:
2210802 - 财政年份:2022
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
- 批准号:
1406279 - 财政年份:2014
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant
Random Matrix Theory and High Dimensional Statistics
随机矩阵理论和高维统计
- 批准号:
1209166 - 财政年份:2012
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant
CAREER: Random Matrices and Related Topics
职业:随机矩阵及相关主题
- 批准号:
0449365 - 财政年份:2005
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant
相似海外基金
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
- 批准号:
24K06766 - 财政年份:2024
- 资助金额:
$ 10.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 10.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant
CAREER: Non-Asymptotic Random Matrix Theory and Connections
职业:非渐近随机矩阵理论和联系
- 批准号:
2237646 - 财政年份:2023
- 资助金额:
$ 10.03万 - 项目类别:
Continuing Grant
Non-invasive neurosurgical planning with Random Matrix Theory MRI
利用随机矩阵理论 MRI 进行无创神经外科规划
- 批准号:
10541655 - 财政年份:2022
- 资助金额:
$ 10.03万 - 项目类别:
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
- 批准号:
RGPIN-2019-04888 - 财政年份:2022
- 资助金额:
$ 10.03万 - 项目类别:
Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
- 批准号:
RGPIN-2019-05037 - 财政年份:2022
- 资助金额:
$ 10.03万 - 项目类别:
Discovery Grants Program - Individual
Fluctuations of random matrix eigenvalues and disordered systems
随机矩阵特征值的涨落和无序系统
- 批准号:
RGPIN-2022-03118 - 财政年份:2022
- 资助金额:
$ 10.03万 - 项目类别:
Discovery Grants Program - Individual
Fifty Years of Number Theory and Random Matrix Theory
数论和随机矩阵论五十年
- 批准号:
2200884 - 财政年份:2022
- 资助金额:
$ 10.03万 - 项目类别:
Standard Grant