Random Matrices and Related Problems

随机矩阵及相关问题

基本信息

  • 批准号:
    1916014
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Methods for statistical analysis of high dimensional data and large random matrices have receive increased attention in recent years. This project aims to develop new methods for these problems and extend the applicability of existing methods. The research on new methodology for high dimensional data includes both tools for ultra-high dimensional data, and the theoretical study of statistical properties for methods applicable to data with high dimensionality and fixed sample sizes. In this project, the PIs will develop new statistical methods and extend existing methods with novel applications in many fields of statistics, physics, and biology. The efficiency of these methodologies will be demonstrated via simulations and applications to real data sets. In addition, the research results will promote teaching and learning activities. The research results will be disseminated through conference presentations and publications. This project develops new methodologies for tests on the dependence structure for high dimensional data and large random matrices. The PIs will investigate a series of topics that are closely related to high dimensional data, including tests on dependence structure for high dimensional data, tests on high-dimensional mean vectors and high-dimensional covariance matrices, and nonparametric tests for complete independence for high-dimensional data. In addition, the PIs will study the spectral radii of large random matrices such as the limiting distribution for the maximum eigenvalue from principal minors of sample covariance matrices, the largest eigenvalues of Markov matrices, and the limiting distribution for the largest absolute value for the products of truncated unitary matrices. The research in this project will expand the scope of the application of high-dimensional statistical methods and large random matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维数据和大随机矩阵的统计分析方法近年来受到越来越多的关注。本项目旨在为这些问题开发新的方法,并扩展现有方法的适用性。高维数据新方法的研究既包括超高维数据的工具研究,也包括高维固定样本量数据统计方法的理论研究。在这个项目中,pi将开发新的统计方法,并在统计学、物理学和生物学的许多领域扩展现有方法的新应用。这些方法的效率将通过模拟和实际数据集的应用来证明。此外,研究成果将促进教学和学习活动。研究结果将通过会议发言和出版物传播。本项目为高维数据和大型随机矩阵的依赖结构测试开发了新的方法。pi将研究一系列与高维数据密切相关的主题,包括高维数据的依赖结构测试,高维平均向量和高维协方差矩阵的测试,以及高维数据完全独立性的非参数测试。此外,pi将研究大型随机矩阵的谱半径,如样本协方差矩阵的主副值的最大特征值的极限分布,马尔可夫矩阵的最大特征值,以及截断的幺正矩阵的乘积的最大绝对值的极限分布。本课题的研究将拓展高维统计方法和大随机矩阵的应用范围。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Empirical likelihood method for complete independence test on high-dimensional data
Limiting Empirical Spectral Distribution for Products of Rectangular Matrices
Limiting Behavior of Largest Entry of Random Tensor Constructed by High-Dimensional Data
  • DOI:
    10.1007/s10959-019-00958-1
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Tiefeng Jiang;Junshan Xie
  • 通讯作者:
    Tiefeng Jiang;Junshan Xie
Spectral Radii of Products of Random Rectangular Matrices
  • DOI:
    10.1007/s10959-019-00942-9
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Y. Qi;Mengzi Xie
  • 通讯作者:
    Y. Qi;Mengzi Xie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiefeng Jiang其他文献

The limiting distributions of eigenvalues of sample correlation matrices
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tiefeng Jiang
  • 通讯作者:
    Tiefeng Jiang
Eigenvalues of large chiral non-Hermitian random matrices
大型手性非厄米随机矩阵的特征值
  • DOI:
    10.1063/1.5088607
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Shuhua Chang;Tiefeng Jiang;Y. Qi
  • 通讯作者:
    Y. Qi
Distributions of Eigenvalues of Large Euclidean Matrices Generated from Three Manifolds
Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles
Limit theorems for beta-Jacobi ensembles
  • DOI:
    10.3150/12-bej495
  • 发表时间:
    2009-11
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Tiefeng Jiang
  • 通讯作者:
    Tiefeng Jiang

Tiefeng Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiefeng Jiang', 18)}}的其他基金

Random Matrices with Application to Quantum Computing and Econometrics
随机矩阵在量子计算和计量经济学中的应用
  • 批准号:
    2210802
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
  • 批准号:
    1406279
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Random Matrix Theory and High Dimensional Statistics
随机矩阵理论和高维统计
  • 批准号:
    1209166
  • 财政年份:
    2012
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Random Matrices and Related Topics
职业:随机矩阵及相关主题
  • 批准号:
    0449365
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
A Study of Random Matrix Problems Related to Statistics
统计相关随机矩阵问题的研究
  • 批准号:
    0308151
  • 财政年份:
    2003
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Random matrices and related models
随机矩阵及相关模型
  • 批准号:
    1664692
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Spectral Properties of Random Band Matrices and Related Questions
随机带矩阵的谱特性及相关问题
  • 批准号:
    1700009
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Asymptotic geometric analysis, random matrices and related topics
渐近几何分析、随机矩阵及相关主题
  • 批准号:
    251088-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic geometric analysis, random matrices and related topics
渐近几何分析、随机矩阵及相关主题
  • 批准号:
    411951-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Asymptotic geometric analysis, random matrices and related topics
渐近几何分析、随机矩阵及相关主题
  • 批准号:
    251088-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic geometric analysis, random matrices and related topics
渐近几何分析、随机矩阵及相关主题
  • 批准号:
    411951-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Random Matrices and Related Topics
随机矩阵及相关主题
  • 批准号:
    1361782
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Asymptotic geometric analysis, random matrices and related topics
渐近几何分析、随机矩阵及相关主题
  • 批准号:
    251088-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory, random matrices, and related topics
表示论、随机矩阵和相关主题
  • 批准号:
    25800062
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了