Scale Invariance and Dynamic Phase Transitions in Non-Equilibrium Systems
非平衡系统中的尺度不变性和动态相变
基本信息
- 批准号:0308548
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports theoretical studies of non-equilibrium condensed matter systems. Statistical mechanics provides the foundation for our present understanding of interacting many-particle systems. In the (usually idealized) situation of thermal equilibrium, the probability distributions for a variety of physical realizations are known at least in principle. This allows a systematic construction of the thermodynamics of a given system in terms of a few relevant macroscopic variables, and the derivation of its equations of state. For systems slightly disturbed away from equilibrium, linear response theory can be used to compute dynamical susceptibilities, transport coefficients, and relaxation rates. However, no such general theoretical framework exists to date for systems far from equilibrium. Aside from a large variety of interesting physical examples, many chemical and virtually all biological systems are sustained in a non-equilibrium steady state (NESS). In addition, problems from ecology, sociology, and economic theory can be described in terms of stochastic processes, i.e., models akin to those used in non-equilibrium statistical mechanics. Among the truly fundamental problems in current theoretical physics is therefore the characterization of the stationary probability distributions of NESS in terms of certain global properties such as symmetries, overall features of the interactions, conservation laws, etc. Some progress in this direction has been achieved for non-equilibrium systems that are either tuned to the vicinity of a dynamic phase transition, or generally display scale invariance: In these situations the renormalization group (RG) can be employed as a powerful tool to classify the ensuing phases and characterize the transitions in terms of universal scaling properties.Based on previous research, the project here has a double approach to the investigation of NESS in scale-invariant dynamical systems, namely the study of simplified model cases by means of all available mathematical methods, and the detailed analysis of experiments performed far-from-equilibrium conditions. The goal is to extract general features and principles that permit the classification of NESS and, in the second case, optimize material properties and processes.The project offers an integrated interdisciplinary environment for research and education. Research material will be incorporated into courses. A textbook on this subject continues to be written.%%% This theoretical research project addresses the non-equilibrium behavior of condensed matter systems. Typical examples of such systems are materials growth, pattern formation, and phase transitions with driving forces. Most chemical systems and all biological systems are in these non-equilibrium states. Research will look for common themes that can assist the understanding of these phenomena.The project offers an integrated interdisciplinary environment for research and education. Research material will be incorporated into courses. A textbook on this subject continues to be written.***
该奖项支持非平衡凝聚态系统的理论研究。统计力学为我们目前理解相互作用的多粒子系统提供了基础。在热平衡(通常是理想化的)情况下,各种物理实现的概率分布至少在原则上是已知的。这使得可以根据几个相关的宏观变量来系统地构建给定系统的热力学,并推导出它的状态方程。对于稍微偏离平衡的系统,线性响应理论可以用来计算动力学极化率、输运系数和松弛速率。然而,对于远离平衡的系统,到目前为止还没有这样的一般理论框架。除了大量有趣的物理例子外,许多化学系统和几乎所有的生物系统都维持在非平衡稳态(NESS)中。此外,来自生态学、社会学和经济理论的问题可以用随机过程来描述,即类似于非平衡统计力学中使用的模型。因此,在当前的理论物理中,真正基本的问题是根据某些全局性质,如对称性、相互作用的总体特征、守恒定律等来表征非平衡系统的定态概率分布。对于非平衡系统,在这个方向上已经取得了一些进展,这些非平衡系统要么调谐到动态相变附近,要么通常表现出标度不变:在这些情况下,重整化群(RG)可以作为一个强大的工具来分类随后的相变,并根据普遍的标度性质来刻画相变。在前人研究的基础上,本项目采用了双重方法来研究标度不变动力系统中的非平衡系统。即通过所有可用的数学方法对简化模型案例进行研究,并对执行远离平衡条件的实验进行详细分析。该项目的目标是提取允许对Ness进行分类的一般特征和原则,并在第二种情况下优化材料性能和工艺。该项目为研究和教育提供了一个综合的跨学科环境。研究材料将被纳入课程。关于这一主题的教科书仍在编写中。这个理论研究项目致力于研究凝聚态系统的非平衡行为。这类系统的典型例子是材料生长、图案形成和具有驱动力的相变。大多数化学系统和所有生物系统都处于这些非平衡状态。研究将寻找有助于理解这些现象的共同主题。该项目为研究和教育提供了一个综合的跨学科环境。研究材料将被纳入课程。关于这个主题的教科书仍在编写中。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uwe Tauber其他文献
Uwe Tauber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uwe Tauber', 18)}}的其他基金
DMS-EPSRC Eco-Evolutionary Dynamics of Fluctuating Populations
DMS-EPSRC 种群波动的生态进化动力学
- 批准号:
2128587 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Complexity in Materials far from Equilibrium Conference, May 14-16, 2008, Blacksburg, VA
远离平衡材料的复杂性会议,2008 年 5 月 14-16 日,弗吉尼亚州布莱克斯堡
- 批准号:
0757181 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Phase Transitions and Scaling in Non-Equilibrium Systems
非平衡系统中的相变和缩放
- 批准号:
0075725 - 财政年份:2000
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似海外基金
Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
- 批准号:
DP220101721 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
- 批准号:
2204102 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Fellowship Award
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
- 批准号:
2213335 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
- 批准号:
RGPIN-2020-07120 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual