Three-Dimensional Nonlinear Gravity-Capillary Water Waves
三维非线性重力毛细管水波
基本信息
- 批准号:0309160
- 负责人:
- 金额:$ 11.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies the theory of three-dimensional nonlinear gravity-capillary waves in fluid bounded below by a rigid horizontal bottom and above by a free surface. The research is focused on incompressible inviscid fluids of constant density, moving under the influence of gravity and surface tension on the free surface, with irrotational flow. The work centers on three problem areas. The first will establish the existence of exact twin-soliton solutions, obliquely-interacting identical two-dimensional solitary waves. Work in the second area aims to prove the existence of three-dimensional propagating waves that decay to zero in both propagating and transverse directions in water with large surface tension. The third problem area concerns the existence of three-dimensional propagating waves bifurcating from a two-dimensional generalized solitary wave, a solitary wave with ripples at infinity, in water with small surface tension. In this work, the exact fully nonlinear governing equations, rather than approximate model equations, are employed to study three-dimensional propagating surface waves in water. Interplay of theoretical fluid dynamics and applied analysis is essential to the project. The theory of water waves is essential for understanding and control of many important natural phenomena, such as ocean waves generated by wind or earthquakes, and waves generated by ships. This project focuses on the mathematical theory of three-dimensional water waves. The research will contribute to the design of ships with significantly reduced wave resistance, as well as understanding of water-wave phenomena observed in experiments. Design of ships with low wave resistance is especially important for eliminating giant waves generated by fast ferries, which threaten coastlines and have been blamed for many boat accidents.
本项目研究流体中三维非线性重力-毛细波理论,流体下方为刚性水平底,上方为自由面。研究的对象是等密度的不可压缩无粘流体,在重力和表面张力的影响下在自由表面上运动,具有无旋流。这项工作围绕三个问题领域展开。第一个将建立精确的孪生孤子解的存在性,即斜相互作用的完全相同的二维孤立波。第二个领域的工作旨在证明在具有大表面张力的水中,三维传播波的存在,该波在传播方向和横向都衰减为零。第三个问题涉及在具有小表面张力的水中存在从二维广义孤立波分叉出来的三维传播波,该孤立波在无穷远处具有波纹。本文采用精确的完全非线性控制方程,而不是近似的模型方程来研究三维表面波在水中的传播。理论流体力学和应用分析的相互作用对该项目至关重要。水波理论对于理解和控制许多重要的自然现象是必不可少的,例如风或地震产生的海浪,以及船舶产生的海浪。本项目主要研究三维水波的数学理论。这项研究将有助于显著降低波浪阻力的船舶的设计,以及对在实验中观察到的水波现象的理解。对于消除快速渡轮产生的巨浪来说,低抗浪船舶的设计尤为重要。快速渡轮威胁着海岸线,被指责为许多船只事故的罪魁祸首。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu-Ming Sun其他文献
Existence theory of capillary-gravity waves on water of finite depth
- DOI:
10.3934/mcrf.2014.4.315 - 发表时间:
2014-04 - 期刊:
- 影响因子:1.2
- 作者:
Shu-Ming Sun - 通讯作者:
Shu-Ming Sun
Computability aspects for 1st-order partial differential equations via characteristics
- DOI:
10.1016/j.tcs.2015.03.039 - 发表时间:
2015-06-07 - 期刊:
- 影响因子:
- 作者:
Shu-Ming Sun;Ning Zhong - 通讯作者:
Ning Zhong
On bounded variation solutions of quasi-linear 1-Laplacian problems with periodic potential in R^N
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Ling Ding;Shu-Ming Sun;Bo Tang - 通讯作者:
Bo Tang
Existence of generalized solitary waves for a diatomic Fermi-Pasta-Ulam-Tsingou lattice
双原子费米-帕斯塔-乌拉姆-青古晶格广义孤立波的存在性
- DOI:
10.1016/j.jde.2024.12.036 - 发表时间:
2025-04-05 - 期刊:
- 影响因子:2.300
- 作者:
Shengfu Deng;Shu-Ming Sun - 通讯作者:
Shu-Ming Sun
Shu-Ming Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu-Ming Sun', 18)}}的其他基金
Some Mathematical Problems on Exact Solitary Water Waves
关于精确孤立水波的一些数学问题
- 批准号:
1210979 - 财政年份:2012
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Stability of Solitary Waves on Water of Finite Depth
有限深度水面上孤立波的稳定性
- 批准号:
0807597 - 财政年份:2008
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Nonlinear Surface Waves on Water of Finite Depth
有限深度水面上的非线性表面波
- 批准号:
9971764 - 财政年份:1999
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis on Waves in Stratified Fluids of Infinite Depth
数学科学:无限深度分层流体中的波分析
- 批准号:
9623060 - 财政年份:1996
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Three-dimensional Nonlinear Structured Illumination for Live Imaging with 80 nm resolution
用于 80 nm 分辨率实时成像的三维非线性结构照明
- 批准号:
10637540 - 财政年份:2023
- 资助金额:
$ 11.6万 - 项目类别:
Realization of light needle microscopy without nonlinear excitation and application to rapid three-dimensional imaging
无非线性激励光针显微镜的实现及其在快速三维成像中的应用
- 批准号:
22H01979 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generation mechanism of turbulence coherent structure by three-dimensional flow stability analysis applying nonlinear model
应用非线性模型进行三维流动稳定性分析的湍流相干结构生成机制
- 批准号:
19KK0373 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Nonlinear Analysis of Three-Dimensional Water-Wave Patterns via Exponential Asymptotics
通过指数渐近法对三维水波模式进行非线性分析
- 批准号:
2004589 - 财政年份:2020
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
A three-dimensional study of nonlinear wave propagation in brass instruments
铜管乐器中非线性波传播的三维研究
- 批准号:
489386-2016 - 财政年份:2018
- 资助金额:
$ 11.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A three-dimensional study of nonlinear wave propagation in brass instruments
铜管乐器中非线性波传播的三维研究
- 批准号:
489386-2016 - 财政年份:2017
- 资助金额:
$ 11.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2017
- 资助金额:
$ 11.6万 - 项目类别:
Discovery Grants Program - Individual
Development of efficient nonlinear analysis method using accelerated gradient method for three dimensional frame structures
使用加速梯度法开发三维框架结构的高效非线性分析方法
- 批准号:
16H06792 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A three-dimensional study of nonlinear wave propagation in brass instruments
铜管乐器中非线性波传播的三维研究
- 批准号:
489386-2016 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Discovery Grants Program - Individual