Foundations of Complexity Theory

复杂性理论的基础

基本信息

  • 批准号:
    0310466
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-01-31
  • 项目状态:
    已结题

项目摘要

Complexity theory addresses the question of how much resource is needed to solve a given computational problem. In recent years complexity theory has found connections and applications in many scientific and engineering disciplines. This project plans to investigate complexity theory across a broad front. The topics include communication complexity, decision trees, quantum algorithms, quantum cryptography, and other foundational issues in complexity theory. Te goal is to gain deep insights into the nature of computation, so that one can most effectively perform computational tasks in any model. It is expected that a variety of algebraic and combinatorial techniques will be called upon to explore these topics.Two of the most interesting scientific developments in recent years spring from the realization that complexity theory can be utilized for cryptography, and that quantum mechanics can be used for performing powerful computation. Advances in these fronts have attracted interest from scientific communities at large, as their relevance is far-reaching. The research of this project could lead to substantial further progress in these two areas.In the broader domain of public education, the Principal Investigator has given many speeches in recent years on various topics on complexity, cryptography and quantum computing. Many of these talks are geared toward general audiences and often undergraduate students. These lectures, if thoughtfully designed, can stimulate the intellectual curiosity of young minds and develop their interest in the computing sciences. With further advances of research in these areas, one can expect that public awareness and interest will be further enhanced to the good of a stronger scientific education.
复杂性理论解决了解决给定计算问题需要多少资源的问题。 近年来,复杂性理论在许多科学和工程学科中找到了联系和应用。 该项目计划广泛研究复杂性理论。 主题包括通信复杂性、决策树、量子算法、量子密码学以及复杂性理论中的其他基础问题。 我们的目标是深入了解计算的本质,以便人们可以在任何模型中最有效地执行计算任务。 预计将调用各种代数和组合技术来探索这些主题。 近年来两个最有趣的科学发展源于这样的认识:复杂性理论可以用于密码学,并且量子力学可以用于执行强大的计算。 这些领域的进展引起了整个科学界的兴趣,因为它们的相关性是深远的。 该项目的研究可能会在这两个领域带来实质性的进一步进展。 在更广泛的公共教育领域,首席研究员近年来就复杂性、密码学​​和量子计算等各种主题发表了多次演讲。 其中许多讲座面向普通观众,通常是本科生。 这些讲座如果经过精心设计,可以激发年轻人的求知欲,培养他们对计算科学的兴趣。 随着这些领域研究的进一步进展,可以预期公众的意识和兴趣将进一步增强,有利于加强科学教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boaz Barak其他文献

Distinguishing the Knowable from the Unknowable with Language Models
用语言模型区分可知与不可知
  • DOI:
    10.48550/arxiv.2402.03563
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gustaf Ahdritz;Tian Qin;Nikhil Vyas;Boaz Barak;Benjamin L. Edelman
  • 通讯作者:
    Benjamin L. Edelman
17.2 Symptomatic and Mechanism-Based Treatments for Neuropsychiatric Symptoms in Williams Syndrome
  • DOI:
    10.1016/j.jaac.2023.07.719
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Boaz Barak
  • 通讯作者:
    Boaz Barak
Provable Copyright Protection for Generative Models
生成模型的可证明版权保护
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikhil Vyas;S. Kakade;Boaz Barak
  • 通讯作者:
    Boaz Barak
The relationship between public trust and perceived value of Israel's coastal areas with infrastructure: What is next to a beach matters
  • DOI:
    10.1016/j.ocecoaman.2019.104829
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Boaz Barak;Maya Pelach
  • 通讯作者:
    Maya Pelach
An Economic Solution to Copyright Challenges of Generative AI
生成人工智能版权挑战的经济解决方案
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiachen T. Wang;Zhun Deng;Hiroaki Chiba;Boaz Barak;Weijie J. Su
  • 通讯作者:
    Weijie J. Su

Boaz Barak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boaz Barak', 18)}}的其他基金

AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
  • 批准号:
    1565264
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
TWC: Small: Complexity Assumptions for Cryptographic Schemes
TWC:小:加密方案的复杂性假设
  • 批准号:
    1618026
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Women In Theory Workshop
女性理论研讨会
  • 批准号:
    0813748
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CT-ISG: Cryptographic Foundations for Next-Generation Security Applications
CT-ISG:下一代安全应用的密码学基础
  • 批准号:
    0627526
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
  • 批准号:
    2344680
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Non-regular complexity theory
非正则复杂性理论
  • 批准号:
    23K10976
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
  • 批准号:
    2302375
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    RGPIN-2021-03036
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    RGPAS-2021-00032
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
SHF: Small: Data Movement Complexity: Theory and Optimization
SHF:小型:数据移动复杂性:理论与优化
  • 批准号:
    2217395
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimization, Complexity, Algebra and Invariant Theory
最优化、复杂性、代数和不变理论
  • 批准号:
    RGPIN-2020-04599
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了